[1] Yu H C,Ling C,Bhattacharya J,et al. Designing the Next Generation High Capacity Battery Electrodes[J]. Energy Environ Sci,2014,7(5):1760-1768. [2] Li W,Chen S,Yu J,et al. In-situ Synthesis of Interconnected SWCNT/OMC Framework on Silicon Nanoparticles for High Performance Lithium-Ion Batteries[J]. Green Energy Environ,2016,1(1):91-99. [3] Xu G L,Chen Z H,Zhong G M,et al. Nanostructured Black Phosphorus/Ketjenblack Multiwalled Carbon Nanotubes Composite as High Performance Anode Material for Sodium-Ion Batteries[J]. Nano Lett,2016,16(6):3955-3965. [4] Chevrier V L,Ceder G. Challenges for Na-ion Negative Electrodes[J]. J Electrochem Soc,2011,158(9):A1011-A1014. [5] Sun L Q,Li M J,Sun K,et al. Electrochemical Activity of Black Phosphorus as an Anode Material for Lithium-Ion Batteries[J]. J Phys Chem C,2012,116(28):14772-14779. [6] Qian J,Wu X,Cao Y,et al. High Capacity and Rate Capability of Amorphous Phosphorus for Sodium-Ion Batteries[J]. Angew Chem Int Ed,2013,52(17):4633-4636. [7] Dahbi M,Yabuuchi N,Kubota K,et al. Negative Electrodes for Na-Ion Batteries[J]. Phys Chem Chem Phys,2014,16(29):15007-15028. [8] Akahama Y,Endo S,Narita S. Electrical Properties of Black Phosphorus Single Crystals[J]. J Phys Soc Jpn,1983,52(6):2148-2155. [9] Li X,Deng B,Wang X,et al. Synthesis of Thin-Film Black Phosphorus on a Flexible Substrate[J]. 2D Mater,2015,2(3):031002. [10] Qian J F,Wu X Y,Cao Y L,et al. High Capacity and Rate Capability of Amorphous Phosphorus for Sodium Ion Batteries[J]. Angew Chem,125(17):4731-4734. [11] Kim Y,Park Y,Choi A,et al. An Amorphous Red Phosphorus/Carbon Composite as a Promising Anode Material for Sodium-Ion Batteries[J]. Adv Mater,2013,25(22):3045-3049. [12] Li W J,Chou S L,Wang J Z,et al. Simply Mixed Commercial Red Phosphorus and Carbon Nanotube Composite with Exceptionally Reversible Sodium-Ion Storage[J]. Nano Lett,2013,13(11):5480-5484. [13] Extance P,Elliott S R. Pressure Dependence of the Electrical Conductivity of Amorphous Red Phosphorus[J]. Philos Mag B,1981,43(3) 469-483. [14] Wang L,He X,Li J,et al. Nano-Structured Phosphorus Composite as High-Capacity Anode Materials for Lithium Batteries[J]. Angew Chem Int Ed,2012,51(36):9034-9037. [15] Xu J,Jeon I Y,Ma J,et al. Understanding of the Capacity Contribution of Carbon in Phosphorus-Carbon Composites for High-Performance Anodes in Lithium-Ion Batteries[J]. Nano Res,2017,10(4):1268-1281. [16] Liu S,Xu H,Bian X,et al. Nanoporous Red Phosphorus on Reduced Graphene Oxide as Superior Anode for Sodium-Ion Batteries[J]. ACS Nano,2018,12(7):7380-7387. [17] Li W,Yang Z,Li M,et al. Amorphous Red Phosphorus Embedded in Highly Ordered Mesoporous Carbon with Superior Lithium and Sodium Storage Capacity[J]. Nano Lett,2016,16(3):1546-1553. [18] Qian J F,Qiao D,Ai X P,et al. Reversible 3-Li Storage Reactions of Amorphous Phosphorus as High Capacity and Cycling-Stable Anodes for Li-Ion Batteries[J]. Chem Commun,48(71):8931. [19] Ceppatelli M,Bini R,Caporali M,et al. High-Pressure Chemistry of Red Phosphorus and Water under Near-UV Irradiation[J]. Angew Chem Int Ed,2013,52(8):2313-2317. [20] Lee G H,Jo M R,Zhang K,et al. A Reduced Graphene Oxide-Encapsulated Phosphorus/Carbon Composite as a Promising Anode Material for High-Performance Sodium-Ion Batteries[J]. J Mater Chem A,2017,5(7):3683-3690. [21] Chang W C,Tseng K W,Tuan H Y. Solution Synthesis of Iodine-Doped Red Phosphorus Nanoparticles for Lithium-Ion Battery Anodes[J]. Nano Lett,2017,17(2):1240-1247. [22] Bai A,Wang L,Li J,et al. Composite of Graphite/Phosphorus as Anode for Lithium-Ion Batteries[J]. J Power Sources,2015,289:100-104. [23] Liang S,Li N,Wang H,et al. “Rebar-reinforced concrete” Carbon Nanotubes/Carbon Black@ Phosphorus Multilevel Architecture from One-Pot Ball Milling as Anode Materials[J]. Ceram Int,2019,45(1):1331-1338. [24] Li X,Chen G,Le Z,et al. Well-Dispersed Phosphorus Nanocrystals Within Carbon via High-Energy Mechanical Milling for High Performance Lithium Storage[J]. Nano Energy,2019,59:464-471. [25] Jiao X,Liu Y,Li B,et al. Amorphous Phosphorus-Carbon Nanotube Hybrid Anode with Ultralong Cycle Life and High-Rate Capability for Lithium-Ion Battery[J]. Carbon,2019,148:518-524. [26] Lodico J J,Lai C H,Woodall M,et al. Irreversibility at Macromolecular Scales in the Flake Graphite of the Lithium-Ion Battery Anode[J]. J Power Sources,2019,436:226841. [27] Song J,Yu Z,Gordin M L,et al. Chemically Bonded Phosphorus/Graphene Hybrid as a High Performance Anode for Sodium-Ion Batteries[J]. Nano Lett,2014,14(11):6329-6335. [28] Fan X,Xu H,Zuo S,et al. Preparation and Supercapacitive Properties of Phosphorus-Doped Reduced Graphene Oxide Hydrogel[J]. Electrochim Acta,2020,330:135207. |