1 |
AURBACH D, MARKOVSKY B, SALITRA G, et al. Review on electrode-electrolyte solution interactions, related to cathode materials for Li-ion batteries[J]. J Power Sources, 2007, 165(2): 491-499.
|
2 |
BING J, HWANG, CHIEN Y, et al. Structure, morphology, and electrochemical investigation of LiMn2O4 thin film cathodes deposited by radio frequency sputtering for lithium microbatteries[J]. J Phys Chem C, 2009, 113(26): 11373-11380.
|
3 |
LI W T, CAMPION C, LUCHT B L, et al. Additives for stabilizing LiPF6-based electrolytes against thermal decomposition[J]. J Electrochem Soc, 2005, 152(7): A1361-A1365.
|
4 |
XU G J, LIU Z H, ZHANG C J, et al. Strategies for improving the cyclability and thermo-stability of LiMn2O4-based batteries at elevated temperatures[J]. J Mater Chem A, 2015, 3(8): 4092-4123.
|
5 |
王洁, 崔孝玲, 赵冬妮, 等. 适配于富锂锰基正极材料电解液体系的研究[J]. 现代化工, 2020, 40(1): 19-24.
|
|
WANG J, CUI X L, ZHAO D N, et al. Study on electrolyte adapted to lithium-rich layered oxide cathode materials[J]. Mod Chem Ind, 2020, 40(1): 19-24.
|
6 |
徐菲, 李世友, 赵冬妮, 等. 硅烷添加剂在锂离子电池电解液中的应用[J]. 硅酸盐学报, 2021, 49(1): 161-166.
|
|
XU F, LI S Y, ZHAO D N, et al. Application of silane additive in electrolyte of lithium ion battery[J]. J Chinese Ceram Soc, 2021, 49(1): 161-166.
|
7 |
ZHANG S S. Aromatic isocyanate as a new type of electrolyte additive for the improved performance of Li-ion batteries[J]. J Power Sources, 2006, 163(1): 567-572.
|
8 |
DONG P, WANG D, YAO Y, et al. Stabilizing interface layer of LiNi0.5Co0.2Mn0.3O2 cathode materials under high voltage using p-toluenesulfonyl isocyanate as film forming additive[J]. J Power Sources, 2017, 344: 111-118.
|
9 |
DENG B W, WANG H, GE W J, et al. Investigating the influence of high temperatures on the cycling stability of a LiNi0.6Co0.2Mn0.2O2 cathode using an innovative electrolyte additive[J]. Electrochim Acta, 2017, 236: 61-71.
|
10 |
WANG S L, CHEN S M, GAO W Q, et al. A new additive 3-isocyanatopropyltriethoxysilane to improve electrochemical performance of Li/NCM622 half-cell at high voltage[J]. J Power Sources, 2019, 423: 90-97.
|
11 |
JANG S H, YIM T. Effect of silyl ether-functinoalized dimethoxydimethylsilane on electrochemical performance of a Ni-rich NCM cathode[J]. ChemPhysChem, 2017, 18(23): 3402-3406.
|
12 |
YE C C, TU W Q, YIN L M, et al. Converting detrimental HF in electrolyte into a highly-fluorinated interphase on cathode[J]. J Mater Chem A, 2018, 6(36): 17642-17652.
|
13 |
YOU L, DUAN K, ZHANG G, et al. N,N-Dimethylformamide electrolyte additive via a blocking strategy enables high performance lithium ion battery under high temperature[J]. J Phys Chem C, 2019, 123: 5942-5950.
|
14 |
陈家辉. 锂离子电池高电压电解液制备及其作用机理研究[D]. 深圳: 深圳大学, 2016.
|
|
CHEN J H. Preparation and investigation of high voltage electrolyte for lithium-ion battery[D]. Shenzhen: Shenzhen University, 2016.
|
15 |
KIM K, HWANG D, KIM S, et al. Cyclic aminosilane-based additive ensuring stable electrode-electrolyte interfaces in Li-ion batteries[J]. Adv Energy Mater, 2020, 10(15): 2000012.
|
16 |
ZHAO W M, ZHENG B Z, LI H D, et al. Toward a durable solid electrolyte film on the electrodes for Li-ion batteries with high performance[J]. Nano Energy, 2019, 63: 103815.
|
17 |
JOW R T, ZHANG S, XU K, et al. Non-aqueous electrolyte solutions comprising additives and non-aqueous electrolyte cells comprising the same: US, US6905762 B1[P]. 2005.
|
18 |
HAN J G, JEONG M Y, KIM K, et al. An electrolyte additive capable of scavenging HF and PF5 enables fast charging of lithium-ion batteries in LiPF6-based electrolytes[J]. J Power Sources, 2020, 446: 227366.
|
19 |
AMINE K, WANG Q, VISSERS, et al. Novel silane compounds as electrolyte solvents for Li-ion batteries[J]. Electrochem Commun, 2006, 8(3): 429-433.
|
20 |
WANG J, ZHAO X, LUO H, et al. A novel aminoalkyldisiloxane compound as a film-forming electrolyte additive for graphite anode[J]. Electrochemistry, 2015, 83(7): 537-540.
|
21 |
WANG J L, HAO L, MAI Y J, et al. Synthesis of aminoalkylsilanes with oligo(ethylene oxide) unit as multifunctional electrolyte additives for lithium-ion batteries[J]. Sci China Chem, 2013, 56: 739-745.
|
22 |
WANG S Q, WANG J L, HAO L, et al. A novel aminoalkylsilane compound with oligo(ethylene oxide) units as effective additive for improving cyclability of lithium-ion batteries[J]. J Mater Sci Technol, 2013, 29: 53-57.
|
23 |
ZHANG L, LYONS L, NEWHOUSE J, et al. Synthesis and characterization of alkylsilane ethers with oligo(ethylene oxide) substituents for safe electrolytes in lithium-ion batteries[J]. J Mater Chem, 2010, 20(38): 8224-8226.
|
24 |
YAN X D, CHEN C, ZHU X Q, et al. Aminoalkyldisiloxane as effective electrolyte additive for improving high temperature cycle life of nickel-rich LiNi0.6Co0.2Mn0.2O2/graphite batteries[J]. J Power Sources, 2020, 461: 228099.
|
25 |
YAMANE H, INOUE T, FUJITA M, et al. A causal study of the capacity fading of Li1.01Mn1.99O4 cathode at 80 ℃, and the suppressing substances of its fading[J]. J Power Sources, 2001, 99(1): 60-65.
|
26 |
LI Y K, ZHANG R X, LIU J S, et al. Effect of heptamethyldisilazane as an additive on the stability performance of LiMn2O4 cathode for lithium-ion battery[J]. J Power Sources, 2009, 189(1): 685-688.
|
27 |
WU X W, GUO H J, LI X H, et al. Effect of heptamethyldisilazane on the electrochemical performance of LiMn2O4/Li[J]. Ionics, 2013, 19(3): 429-435.
|
28 |
WU X W, LI X H, WANG Z X, et al. Improvement on the storage performance of LiMn2O4 with the mixed additives of ethanolamine and heptamethyldisilazane[J]. Appl Surf Sci, 2013, 268: 349-354.
|
29 |
LI Y K, ZHANG R X, LIU J S, et al. Effect of heptamethyldisilazane as an additive on the stability performance of LiMn2O4 cathode for lithium-ion battery[J]. J Power Sources, 2009, 189(1): 685-688.
|
30 |
SAIDI Y M, GAO F, BARKER J, et al. Additive to stabilize electrochemical cell: US, US5846673 A[P]. 1998.
|
31 |
TAKECHI K, KOIWAI A, SHIGA T. Nonaqueous electrolytic solution for battery and nonaqueous electrolytic solution battery: US, US6077628 A[P]. 2000.
|
32 |
ZHANG S S. A review on electrolyte additives for lithium-ion batteries[J]. J Power Sources, 2006, 162(2): 1379-1394.
|
33 |
JUNG G H, SUNG J L, JAEGI L, et al. Tunable and robust phosphite-derived surface film to protect lithium-rich cathodes in lithium-ion batteries[J]. ACS Appl Mater Interfaces, 2015, 7(15): 8319-8329.
|
34 |
WOTANGO A S, SU W N, LEGGESSE E G, et al. Improved interfacial properties of MCMB electrode by 1-(trimethylsilyl)imidazole as new electrolyte additive to suppress LiPF6 decomposition[J]. ACS Appl Mater Interfaces, 2017, 9(3): 2410-2420.
|