应用化学 ›› 2022, Vol. 39 ›› Issue (3): 461-469.DOI: 10.19894/j.issn.1000-0518.210089
收稿日期:
2021-03-01
接受日期:
2021-06-28
出版日期:
2022-03-01
发布日期:
2022-03-15
通讯作者:
徐众
基金资助:
Zhong XU(), Jun LI, En-Hui WU, Yan JIANG
Received:
2021-03-01
Accepted:
2021-06-28
Published:
2022-03-01
Online:
2022-03-15
Contact:
Zhong XU
About author:
418968604@qq.comSupported by:
摘要:
以不同膨胀石墨(EG-300、EG-350和EG-400)为支撑材料,石蜡(PW)为相变主材,提钒尾渣(VT)为导电强化剂,采用熔融共混法制备复合相变材料,并对复合材料的稳定性和导电性进行测试分析。结果表明,进行60次热循环,EG/PW复合材料质量损失率小于0.03%,VT/EG/PW复合材料质量损失率小于0.08%,添加VT对材料热稳定性影响较小;直线拟合表明质量损失率与循环次数存在线性关系(R2范围在0.06143~0.85924之间);EG/PW复合相变材料的电阻率会随成型压力增加而减小,添加微米级VT之后规律一致,仅EG-300/PW电阻率随VT添加量增加而减小,添加量应该控制在2%以内,添加VT可以增强复合材料的导电性能;压力从2 MPa变到8 MPa时,电阻率下降率在49%以下,添加VT后复合材料电阻率下降率变大,添加VT可以使复合材料电阻率的压敏性提高;指数拟合显示复合相变材料电阻率与压力之间的指数相关性较高。
中图分类号:
徐众, 李军, 吴恩辉, 蒋燕. 添加提钒尾渣对膨胀石墨/石蜡复合相变材料稳定性和导电性的影响[J]. 应用化学, 2022, 39(3): 461-469.
Zhong XU, Jun LI, En-Hui WU, Yan JIANG. Influence of Vanadium Tailings on the Thermal Stability and Electrical Conductivity of Expanded Graphite/ Paraffin Composite Phase Change Materials[J]. Chinese Journal of Applied Chemistry, 2022, 39(3): 461-469.
图1 EG/PW复合相变材料质量损失率直线拟合结果A. A6?1-A6?3;B. B4?1-B4?3;C. C6?1-C6?3
Fig.1 Linear fitting results of mass loss rate of EG/PW composite phase change materials
材料 Material | 指数拟合方程 Exponential fitting equation | 决定系数 R2 |
---|---|---|
A6 | y=0.02655+0.06506×exp(-x/2.12372) | 0.995 00 |
B4 | y=0.02461+0.05645×exp(-x/2.24935) | 0.991 06 |
C6 | y=0.08794+0.70602×exp(-x/0.78776) | 0.992 20 |
D1 | y=0.02169+0.08178×exp(-x/1.74085) | 0.990 50 |
D2 | y=0.02015+0.06898×exp(-x/1.62108) | 0.991 31 |
D3 | y=0.02235+0.04905×exp(-x/1.99365) | 0.994 59 |
E1 | y=0.05462+0.23657×exp(-x/1.16651) | 0.968 61 |
E2 | y=0.06411+0.19818×exp(-x/1.38570) | 0.976 41 |
E3 | y=0.12469+0.47488×exp(-x/1.55865) | 0.995 75 |
F1 | y=0.02835+0.08304×exp(-x/1.63653) | 0.995 13 |
F2 | y=0.15934+0.56590×exp(-x/1.39634) | 0.995 23 |
F3 | y=0.23468+0.66248×exp(-x/1.73287) | 0.988 31 |
表1 电阻率曲线指数拟合结果
Table 1 Exponential fitting results of the resistivity curves
材料 Material | 指数拟合方程 Exponential fitting equation | 决定系数 R2 |
---|---|---|
A6 | y=0.02655+0.06506×exp(-x/2.12372) | 0.995 00 |
B4 | y=0.02461+0.05645×exp(-x/2.24935) | 0.991 06 |
C6 | y=0.08794+0.70602×exp(-x/0.78776) | 0.992 20 |
D1 | y=0.02169+0.08178×exp(-x/1.74085) | 0.990 50 |
D2 | y=0.02015+0.06898×exp(-x/1.62108) | 0.991 31 |
D3 | y=0.02235+0.04905×exp(-x/1.99365) | 0.994 59 |
E1 | y=0.05462+0.23657×exp(-x/1.16651) | 0.968 61 |
E2 | y=0.06411+0.19818×exp(-x/1.38570) | 0.976 41 |
E3 | y=0.12469+0.47488×exp(-x/1.55865) | 0.995 75 |
F1 | y=0.02835+0.08304×exp(-x/1.63653) | 0.995 13 |
F2 | y=0.15934+0.56590×exp(-x/1.39634) | 0.995 23 |
F3 | y=0.23468+0.66248×exp(-x/1.73287) | 0.988 31 |
压力 Pressure/MPa | 数值 Value | A6 | B4 | C6 | D1 | D2 | D3 | E1 | E2 | E3 | F1 | F2 | F3 | |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
电阻率 Resistivity/ (Ω·cm) | 2 | 实验值 Experimental | 0.054 0 | 0.045 9 | 0.140 7 | 0.045 7 | 0.039 1 | 0.038 8 | 0.095 8 | 0.114 9 | 0.256 1 | 0.050 1 | 0.272 0 | 0.516 5 |
拟合值 fitting | 0.051 9 | 0.047 8 | 0.143 7 | 0.047 6 | 0.040 2 | 0.040 3 | 0.097 2 | 0.110 9 | 0.256 3 | 0.052 8 | 0.294 5 | 0.443 6 | ||
4 | 实验值 Experimental | 0.036 4 | 0.032 5 | 0.106 9 | 0.031 2 | 0.027 6 | 0.028 1 | 0.069 7 | 0.082 3 | 0.159 6 | 0.036 4 | 0.180 3 | 0.339 9 | |
拟合值 fitting | 0.036 4 | 0.034 1 | 0.092 3 | 0.029 9 | 0.026 0 | 0.028 9 | 0.062 3 | 0.075 2 | 0.161 2 | 0.035 6 | 0.191 6 | 0.300 5 | ||
6 | 实验值 Experimental | 0.030 9 | 0.028 8 | 0.096 7 | 0.026 3 | 0.023 4 | 0.024 5 | 0.059 1 | 0.070 8 | 0.135 8 | 0.032 1 | 0.149 8 | 0.297 8 | |
拟合值 fitting | 0.030 4 | 0.028 5 | 0.088 3 | 0.024 3 | 0.021 9 | 0.024 8 | 0.056 0 | 0.066 7 | 0.134 8 | 0.030 5 | 0.167 0 | 0.255 5 | ||
8 | 实验值 Experimental | 0.028 5 | 0.027 4 | 0.093 0 | 0.023 9 | 0.021 4 | 0.022 9 | 0.056 6 | 0.065 6 | 0.135 4 | 0.029 8 | 0.141 2 | 0.280 0 | |
拟合值 fitting | 0.028 1 | 0.026 2 | 0.088 0 | 0.022 5 | 0.020 6 | 0.023 2 | 0.054 9 | 0.064 7 | 0.127 5 | 0.029 0 | 0.1612 | 0.241 2 | ||
下降率 Rate of decline/% | 实验值 Experimental | 47.2 | 40.3 | 33.9 | 47.7 | 45.3 | 41.0 | 40.9 | 42.9 | 47.1 | 40.5 | 48.1 | 45.8 | |
拟合值 fitting | 46.0 | 45.2 | 38.8 | 52.7 | 48.7 | 42.4 | 43.6 | 41.6 | 50.3 | 45.1 | 45.3 | 45.6 |
表2 不同复合相变材料在固定压力下的实验和拟合计算电阻率
Table 2 Experiment and fitting calculation of resistivity of different composite phase change materials under fixed pressure
压力 Pressure/MPa | 数值 Value | A6 | B4 | C6 | D1 | D2 | D3 | E1 | E2 | E3 | F1 | F2 | F3 | |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
电阻率 Resistivity/ (Ω·cm) | 2 | 实验值 Experimental | 0.054 0 | 0.045 9 | 0.140 7 | 0.045 7 | 0.039 1 | 0.038 8 | 0.095 8 | 0.114 9 | 0.256 1 | 0.050 1 | 0.272 0 | 0.516 5 |
拟合值 fitting | 0.051 9 | 0.047 8 | 0.143 7 | 0.047 6 | 0.040 2 | 0.040 3 | 0.097 2 | 0.110 9 | 0.256 3 | 0.052 8 | 0.294 5 | 0.443 6 | ||
4 | 实验值 Experimental | 0.036 4 | 0.032 5 | 0.106 9 | 0.031 2 | 0.027 6 | 0.028 1 | 0.069 7 | 0.082 3 | 0.159 6 | 0.036 4 | 0.180 3 | 0.339 9 | |
拟合值 fitting | 0.036 4 | 0.034 1 | 0.092 3 | 0.029 9 | 0.026 0 | 0.028 9 | 0.062 3 | 0.075 2 | 0.161 2 | 0.035 6 | 0.191 6 | 0.300 5 | ||
6 | 实验值 Experimental | 0.030 9 | 0.028 8 | 0.096 7 | 0.026 3 | 0.023 4 | 0.024 5 | 0.059 1 | 0.070 8 | 0.135 8 | 0.032 1 | 0.149 8 | 0.297 8 | |
拟合值 fitting | 0.030 4 | 0.028 5 | 0.088 3 | 0.024 3 | 0.021 9 | 0.024 8 | 0.056 0 | 0.066 7 | 0.134 8 | 0.030 5 | 0.167 0 | 0.255 5 | ||
8 | 实验值 Experimental | 0.028 5 | 0.027 4 | 0.093 0 | 0.023 9 | 0.021 4 | 0.022 9 | 0.056 6 | 0.065 6 | 0.135 4 | 0.029 8 | 0.141 2 | 0.280 0 | |
拟合值 fitting | 0.028 1 | 0.026 2 | 0.088 0 | 0.022 5 | 0.020 6 | 0.023 2 | 0.054 9 | 0.064 7 | 0.127 5 | 0.029 0 | 0.1612 | 0.241 2 | ||
下降率 Rate of decline/% | 实验值 Experimental | 47.2 | 40.3 | 33.9 | 47.7 | 45.3 | 41.0 | 40.9 | 42.9 | 47.1 | 40.5 | 48.1 | 45.8 | |
拟合值 fitting | 46.0 | 45.2 | 38.8 | 52.7 | 48.7 | 42.4 | 43.6 | 41.6 | 50.3 | 45.1 | 45.3 | 45.6 |
1 | ZHAO Y Q, JIN L, ZOU B Y, et al. Expanded graphite-paraffin composite phase change materials: effect of particle size on the composite structure and properties[J]. Appl Therm Eng, 2020, 171(8): 115015. |
2 | CAI Z D, LIU J, ZHOU Y X, et al. Flexible phase change materials with enhanced tensile strength, thermal conductivity and photo-thermal performance[J]. Sol Energy Mater Sol Cells, 2021, 219(1): 110728. |
3 | 赵明伟, 左孝青, 杨牧南, 等. 泡沫铝-石蜡复合相变材料的蓄放热性能研究[J]. 功能材料与器件学报, 2012, 18(5): 391-396. |
ZHAO M W, ZUO X Q, YANG M N, et al. Thermal storage and release properties of aluminum foam-paraffin composite phase change materials[J]. J Funct Mater Devices, 2012, 18(5): 391-396. | |
4 | 万倩, 肖浩南, 钱京, 等. 泡沫铁对石蜡相变储热过程的影响[J]. 储能科学与技术, 2020, 9(1): 94-100. |
WAN Q, XIAO H N, QIAN J, et al. Influence of iron foam on paraffin phase change heat storage process[J]. Energy Storage Sci Technol, 2020, 9(1): 94-100. | |
5 | 高丽媛, 杨宾, 郝梦琳, 等. 碳纳米管/石蜡复合相变材料热性能的实验研究[J]. 应用化工, 2019, 48(4): 752-754, 761. |
GAO L Y, YANG B, HAO M L, et al. Experimental study on thermal properties of carbon nanotube/paraffin composite phase change materials[J]. Appl Chem Ind, 2019, 48(4): 752-754, 761. | |
6 | 高丽媛, 杨宾, 郝梦琳, 等. 石蜡基纳米金属复合相变材料热性能的实验研究[J]. 河北工业大学学报, 2019, 48(1): 51-56. |
GAO L Y, YANG B, HAO M L, et al. Experimental study on thermal properties of nanometal-paraffin composite phase change materials[J]. J Hebei Univ Technol, 2019, 48(1): 51-56. | |
7 | 周宇飞, 袁一鸣, 仇中柱, 等. 纳米铝和石墨烯量子点改性的相变微胶囊的制备及特性[J]. 材料导报, 2019, 33(6): 932-935. |
ZHOU Y F, YUAN Y M, QIU Z Z, et al. Fabrication and characteristics of microencapsulated phase change materials modified by graphene quantum dots and aluminum nano powders[J]. Mater Rep, 2019, 33(6): 932-935. | |
8 | 王大伟, 余荣升, 晏华, 等. 碳纤维/石蜡/膨胀石墨复合相变材料的制备及强化传热研究[J]. 材料导报, 2014, 28(24): 70-73. |
WANG D W, YU R S, YAN H, et al. Study on preparation and heat transfer enhancement of carbon fiber/paraffin/expanded graphite phase change composites[J].Mater Rep, 2014, 28(24): 70-73. | |
9 | 李果, 欧阳婷, 蒋朝, 等. 碳纤维-纳米石墨片网络体导热增强石蜡相变储能复合材料的制备及表征[J]. 复合材料学报, 2020, 37(5): 1130-1137. |
LI G,OU Y T, JIANG C, et al. Preparation and characterization of carbon fiber-graphite nanoplatelets network reinforced paraffin phase change composites[J]. Acta Mater Compositae Sin, 2020, 37(5): 1130-1137. | |
10 | 李新芳, 赵素芬, 吴淑英, 等. 纳米复合材料的制备及相变特性研究[J]. 化工新型材料, 2019, 47(7): 60-63. |
LI X F, ZHAO S F, WU S Y, et al. Synthesis and phase change characteristics of nano-composite[J]. New Chem Mater, 2019, 47(7): 60-63. | |
11 | 任学明, 沈鸿烈, 杨艳. 膨胀石墨/石蜡复合相变材料的碳纳米管掺杂改性研究[J]. 功能材料, 2019, 50(6): 6008-6012. |
REN X M, SHENG H L, YANG Y. Study on the preparation and characterization of expanded graphite/paraffin composite CNTs modified PCM[J]. J Funct Mater, 2019, 50(6): 6008-6012. | |
12 | ZHANG Y F, LI W, HUANG J H, et al. Expanded graphite/paraffin/silicone rubber as high temperature form-stabilized phase change materials for thermal energy storage and thermal interface materials[J]. Materials, 2020, 13(4): 894. |
13 | KAO H T, LI M, LV X W, et al. Preparation and thermal properties of expanded graphite/paraffin/organic montmorillonite composite phase change material[J]. J Therm Anal Calorim, 2012, 107(1): 299-303. |
14 | 王青青, 范鹏远, 陈玉明, 等. 膨胀石墨/石蜡复合相变材料热-电特性实验研究[J]. 塑料工业, 2018, 46(9): 129-133, 137. |
WANG Q Q, FAN P Y, CHEN Y M, et al. Experimental study on the thermo-physical and electrical properties of paraffin/expanded graphite composite phase change materials[J]. China Plast Ind, 2018, 46(9): 129-133, 137. | |
15 | YU C B, YOUN J R, SONG Y S. Encapsulated phase change material embedded by graphene powders for smart and flexible thermal response[J]. Fibers Polym, 2019, 20(3): 545-554. |
16 | ZHANG J Y, LI X X, ZHANG G Q, et al. Characterization and experimental investigation of aluminum nitride-based composite phase change materials for battery thermal management[J]. Energy Convers Manage, 2020, 204(2): 112319. |
17 | HUANG J H, ZHANG B N, HE M, et al. Preparation of anisotropic reduced graphene oxide/BN/paraffin composite phase change materials and investigation of their thermal properties[J]. J Mater Sci, 2020, 55(17): 7337-7350. |
18 | 颜品萍, 罗富彬, 黄宝铨, 等. 导热增强聚乙二醇相变复合材料的制备及其性能[J]. 应用化学, 2020, 37(1): 46-53. |
YAN P P, LUO F B, HUANG B Q, et al. Properties of thermal conductivity enhanced polyethylene glycol-based phase change composites[J]. Chinese J Appl Chem, 2020, 37(1): 46-53. | |
19 | 李春蕾, 高凯, 赵磊, 等. 蒸镀法制备导电聚吡咯相变复合材料[J]. 天津工业大学学报, 2013, 32(3): 19-23. |
LI C L, GAO K, ZHAO L, et al. Fabrication of conductive polypyrrole coated phase change composites using evaporate plating method[J]. J Tiangong Univ, 2013, 32(3): 19-23. | |
20 | 任苗. 导电相变储热混凝土的制备及性能研究[D]. 哈尔滨: 哈尔滨工业大学, 2018. |
REN M. Preparation and performance research of electrical conductive concrete incorporating phase change thermal storage[D]. Harbin:Harbin Institute of Technology, 2018. | |
21 | 何丽红, 杨帆, 佟禹, 等. 石蜡/膨胀石墨复合相变材料在冷拌沥青混合料中的应用[J]. 公路, 2016, 61(8): 181-185. |
HE L H, YANG F, TONG Y, et al. Application of phase change fine aggregate in cold mix asphalt mixture[J]. Highway, 2016, 61(8): 181-185. | |
22 | 高学农, 李得伦, 孙滔, 等.石蜡/膨胀石墨复合相变材料控温电子散热器的性能[J]. 华南理工大学学报(自然科学版), 2012, 40(1): 7-12. |
GAO X N, LI D L, SUN T, et al. Performance of temperature controlled electronic heat sink with composite paraffin/expanded graphite phase change material[J]. J South China Univ Technol Nat Sci, 2012, 40(1): 7-12 | |
23 | 徐众, 万书权, 邓建梅, 等. 石蜡/不同粒径膨胀石墨复合相变材料的制备及性能研究[J].化工新型材料, 2017, 45(5): 57-60. |
XU Z, WAN S Q, DENG J M, et al. Preparation and performance study on phase change material composite of paraffin/different particle sized expanded graphite[J]. New Chem Mater, 2017, 45(5): 57-60. | |
24 | 徐众, 侯静, 李军, 等. 提钒尾渣对膨胀石墨/石蜡复合相变材料导热性能的影响[J]. 化工新型材料, 2021, 49(5): 115-119. |
XU Z, HOU J, LI J, et al. Influence of vanadium tailing on the thermal conductivity performance of EG/PW phase change composite material[J]. New Chem Mater, 2021, 49(5): 115-119. | |
25 | 徐众, 万书权, 韩洪波, 等. 天然鳞片石墨制备可膨胀石墨的工艺研究[J]. 无机盐工业, 2016, 48(5): 30-34. |
XU Z, WAN S Q, HAN H B, et al. Study on preparation of expandable graphite from natural flake graphite[J]. Inorg Chem Ind, 2016, 48(5): 30-34. | |
26 | 徐众, 黄平, 吴恩辉, 等. 膨胀石墨/石蜡复合相变材料的电阻率分析[J]. 储能科学与技术, 2019, 8(2): 371-378. |
XU Z, HUANG P, WU E H, et al. Analysis of electrical resistivity of expanded graphite/paraffin composite phase change material[J]. Energy Storage Sci Technol, 2019, 8(02): 371-378. | |
27 | 华建社, 张娇, 张焱, 等. 膨胀石墨/石蜡复合相变蓄热材料的热性能及定形性研究[J]. 材料导报, 2016, 30(12): 61-64, 75. |
HUA J H, ZHANG J, ZHSANG Y, et al. Study on thermal properties and shape-stabilizing of expanded graphite/paraffin composite phase change material[J]. Mater Rep, 2016, 30(12): 61-64, 75. |
[1] | 杜新伟, 赵文杰, 呼微, 孙昭艳, 刘万利, 任天磊, 付明星. 聚醚醚酮/碳纳米管改性聚丙烯Janus复合隔膜的制备及性能[J]. 应用化学, 2022, 39(12): 1862-1869. |
[2] | 王誉程, 祁影霞, 陆熠璇, 芦洋. 石蜡/十八酸/十八醇复合材料的制备及蓄/放热性能[J]. 应用化学, 2021, 38(8): 969-975. |
[3] | 王森, 庞然, 李达, 李成宇, 张洪杰. 单一基质白光荧光粉Na3Sc2(PO4)3∶Tm3+,Dy3+的合成及发光性质[J]. 应用化学, 2021, 38(11): 0-0. |
[4] | 王森, 庞然, 李达, 李成宇, 张洪杰. 单一基质白光荧光粉Na3Sc2(PO4)3∶Tm3+,Dy3+的合成及发光性质[J]. 应用化学, 2021, 38(11): 1469-1478. |
[5] | 曹友錋, 庞烜, 项盛, 王天昶, 冯立栋, 边新超, 李杲, 陈学思. 溶剂诱导的聚乳酸/聚乳酸衍生物共结晶行为[J]. 应用化学, 2021, 38(1): 60-68. |
[6] | 文璞山, 何瑞, 赵光练, 梁兴, 李明勳. 可溶性聚酰亚胺液晶取向膜的制备与性能[J]. 应用化学, 2020, 37(12): 0-0. |
[7] | 文璞山, 何瑞, 赵光练, 梁兴, 李明勳. 可溶性聚酰亚胺液晶取向膜的制备与性能[J]. 应用化学, 2020, 37(12): 1403-1410. |
[8] | 陈明锋, 刘玉惠, 范先谋, 杨松伟, 林金火, 刘灿培, 黄海滨. 不饱和聚酯片状模塑料的模压成型与性能[J]. 应用化学, 2018, 35(10): 1222-1226. |
[9] | 毛新洁, 刘向荣, 赵顺省, 杨再文, 闫森. 2-吡咯类酰腙的合成、晶体结构及与小牛胸腺DNA的相互作用[J]. 应用化学, 2016, 33(8): 923-931. |
[10] | 李自东,赵晓礼,杨小牛. 聚合物太阳能电池器件热稳定性的研究进展[J]. 应用化学, 2016, 33(1): 1-17. |
[11] | 魏赞斌,王金池,江霞,李颖茜,陈广慧,解庆范. 2,4-二羟基苯乙酮缩异烟酰腙的实验和DFT理论研究:合成、晶体结构和性质及量化计算[J]. 应用化学, 2015, 32(9): 1014-1021. |
[12] | 丁伟, 宋成龙, 李博洋. 壬基酚甜菜碱两性表面活性剂的合成和抗温耐盐性能[J]. 应用化学, 2015, 32(8): 922-930. |
[13] | 郑建华, 刘俊, 肖尧, 戴玲林, 李海洋, 谭宇星, 冯泳兰, 蒋伍玖, 庾江喜, 邝代治. 基于水杨酰腙配体的二丁基锡配合物的合成、晶体结构、热稳定性及与DNA相互作用[J]. 应用化学, 2015, 32(5): 562-569. |
[14] | 陶贤平, 张跃军, 李侠, 贾旭. 二烯丙基甲基烷基溴化铵的结构与性质的关系[J]. 应用化学, 2015, 32(3): 342-349. |
[15] | 李兵营, 闫杰, 倪珏宸, 冯小庚, 邢永恒. 过碳酰胺分子合成条件优化、晶体结构及其热稳定性[J]. 应用化学, 2015, 32(12): 1423-1430. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||