Please wait a minute...
应用化学
今天是
应用化学  2016, Vol. 33 Issue (1): 1-17    DOI: 10.11944/j.issn.1000-0518.2016.01.150399
  综合评述 本期目录 | 过刊浏览 | 高级检索 |
聚合物太阳能电池器件热稳定性的研究进展
李自东abc,赵晓礼ab*(),杨小牛ab*()
a中国科学院长春应用化学研究所 高分子化学与物理国家重点实验室 长春 130022
b中国科学院长春应用化学研究所 高分子复合材料工程实验室 长春 130022
c中国科学院大学 北京 100049
Advances on Device Thermal Stability of Polymer Solar Cells
LI Zidongabc,ZHAO Xiaoliab*(),YANG Xiaoniuab*()
aPolymer Composites Engineering Laboratory, Changchun Institute of Applied Chemistry,Chinese Academy of Sciences,Changchun 130022, China
bState Key Laboratory of Polymer Physics and Chemistry,Changchun Institute of Applied Chemistry,Chinese Academy of Sciences,Changchun 130022, China
cUniversity of Chinese Academy of Sciences,Beijing 100049,China
全文: PDF(1410 KB)   HTML
输出: BibTeX | EndNote (RIS)      
摘要 

实现聚合物太阳能电池的商业化应用有两个关键技术因素:能量转换效率和热稳定性。 在近几年里,能量转换效率已经成功突破10%。 与此同时,器件热稳定性的研究也一直在有条不紊的展开。 本文总结了近年来在聚合物太阳能电池光敏层热稳定性的研究进展,详细阐述了提高形貌热稳定性的常用方法,并对器件热稳定性的研究进行了展望。

服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
李自东
赵晓礼
杨小牛
关键词 聚合物太阳能电池光敏层形貌热稳定性器件性能    
Abstract

The device efficiency and thermal stability are two crucial factors in realizing the commercial application of polymer solar cells(PSCs). The power conversion efficiency(PCE) has been boosted up over 10% during the last decade. And a lot of work was directed at improving the thermal stability of device. In this paper, the development of morphological stability on polymer solar cells is reviewed. Several approaches of improving the morphological stability are illustrated in detail. And a promising future perspective is presented.

Key wordspolymer solar cells    photoactive layer    morphological thermal stability    device performance
收稿日期: 2015-11-13           接受日期: 2015-12-04
基金资助:国家自然科学基金资助项目(21574132,21504090)
通讯作者: 赵晓礼,杨小牛     E-mail: zhaoxiaoli@ciac.ac.cn;xnyang@ciac.ac.cn
引用本文:   
李自东,赵晓礼,杨小牛. 聚合物太阳能电池器件热稳定性的研究进展[J]. 应用化学, 2016, 33(1): 1-17.
LI Zidong,ZHAO Xiaoli,YANG Xiaoniu. Advances on Device Thermal Stability of Polymer Solar Cells. Chinese Journal of Applied Chemistry, 2016, 33(1): 1-17.
链接本文:  
http://yyhx.ciac.jl.cn/CN/10.11944/j.issn.1000-0518.2016.01.150399      或      http://yyhx.ciac.jl.cn/CN/Y2016/V33/I1/1
图1不同PC61BM质量分数的MDMO-PPV:PC61BM复合薄膜在130 ℃条件下热退火不同时间形貌的演变:20% (A,B,C),50%(D,E,F),80%(G,H,I);热退火时间10 min(A,D,G),20 min(D, E, H),60 min(E, F, I)。 图1B中的插图为PC61BM单晶的衍射图[16]
Fig.1Formation of PC61BM single crystals in MDMO-PPV:PC61BM thin films upon annealing at 130 ℃ for PC61BM mass fraction of 20%(A, B, C), 50%(D, E, F), and 80%(G, H, I). The annealing times are 10 min(A, D, G), 20 min(B, E, H), and 60 min(E, F, I), i.e. increasing from left to right. The dark features in the images are PC61BM single crystals. The SAED pattern inserted in Fig.1B representatively shows diffraction pattern of the PC61BM single crystals obtained[16]
图2改性的PPV类材料[17]
Fig.2Molecular structures of modified PPV-based materials[17]
图3初始薄膜的TEM图(A)及相应的示意图(B);热退火之后薄膜的TEM图(C)及相应额示意图(D) [19]
Fig.3TEM image of the pristine film(A) and the corresponding schematic representation(B); TEM image of thermal annealed film(C) and the corresponding schematic representation(D) [19]
图4(A)在室温/热退火和低温/热退火条件下制备的器件能量转换效率(65 ℃)随时间的衰变规律(190 ℃热退火2 min);(B)室温(r.t.)条件下制备的活性层(左)和低温(l.t.)条件下制备的活性层(右)在成膜和热退火时的机理图[20]
Fig.4(A)Degradation of the power conversion efficiency during storage at 65 ℃ in vacuum for the r.t./annealed and l.t./annealed cells(both annealed at 190 ℃ for 2 min); (B)schematic representations illustrating the morphology of theactive layer upon drying(top) and annealing(bottom):for the r.t.(left) and l.t.(right) layers[20]
图5(A)具有P3HT纳米晶须(右)与不具有纳米晶须(左)的初始薄膜形貌和长时间热退火后的形貌的示意图;(B)不同溶剂制备的初始器件的J-V曲线及不同溶剂制备的器件能量转换效率随时间的变化规律(150 ℃)[22]
Fig.5(A)Sketch showing the morphology obtained after longtime thermal annealing with(right column) and without(left column) the spatial confinement effect of P3HT nanofibers in pristine films; (B)J-V curves of pristine solar cells prepared from different solvents and the thermal stability of devices annealed at 150 ℃ for different time [22]
图6(A)在130 ℃热退火条件下,PC61BM晶体在不同的限制维度的共混薄膜中生长速率;(B)在130 ℃热退火条件下,共混薄膜中PC61BM单晶的宽高比随热退火时间的变化规律[23]
Fig.6(A)Growth rates of PC61BM single crystals from the thin composite films annealed at 130 ℃ for the various confinements. Cluster dimensions vs annealing time t in the fast(diamond, solid) and slow(diamond, open) growth directions for the free-standing film and in the slow(up-triangle, open) growth direction for the single-sided confined film; (B)aspect ratio evolution of PC61BM single crystals vs annealing time under various spatial confinements for thin composite films annealed at 130 ℃[23]
图7(A)PC61BM的335 nm特征吸收峰随热退火时间的变化规律。基于含有不同卟啉含量的P3HT/PC61BM体系,拟合的直线的斜率分别为:1.69×10-3(0%), 8.03×10-4(4%), 5.76×10-4(8%), 3.96×10-4(16%); (B)含有不同质量分数的卟啉的器件能量转换效率随热退火时间的变化规律[24]
Fig.7(A)Variation in PC61BM absorption(L= 335 nm) with annealing time. The slope of linear fitting:1.69×10-3(0%), 1.69×10-3(0%), 8.03×10-4(4%), 5.76×10-4(8%), 3.96×10-4(16%); (b)relative efficiency of P3HT:PC61BM devices loading different contents of BL as a function of annealing time [24]
图8(A)不同的卟啉结构;(B)含有不同结构卟啉的P3HT/PC61BM器件的初始和在130 ℃条件下热退火3 h和12 h的器件能量转换效率柱状图;(C)不含和含有BL3的P3HT/PC61BM器件初始和热退火一个月(60 ℃)的J-V曲线[25]
Fig.8(A)Porphyrins used in this study and their chemical structures; (B)histogram of device efficiency of P3HT:PC61BM:porphyrin(3.78%) annealed at 130 ℃ for 3 h, and 12 h; (C)J-V curve of the P3HT:PC61BM device with and without BL3 after annealing at 60 ℃ for one month[25]
图9(A)制备在SiOx、ZnO和PEDOT:PSS基底上的共混薄膜在140 ℃条件下热退火1 h,复合薄膜的光学显微镜图;(B)基于PCDTBT/PC70BM体系的正向器件(a)和反向器件(b),在85 ℃条件下热退火,器件能量转换效率随时间的变化规律[26]
Fig.9(A)Optical micrographs of PCDTBT:PC71BM(1:2) thin film mixtures, 85~100 nm thick, annealed at 140 ℃ for 1 h in N2 environment, supported by three different substrates:SiOx, ZnO and PEDOT:PSS; (B)PCE analysis as a function of thermal annealing time at 85 ℃ thermal stress for PCDTBT:PC71BM solar cells with conventional architecture(a) and inverted architecture(b)[26]
图10P3HT-g-PVTAZ和TAZC60的分子结构[27]
Fig.10The molecular structure of P3HT-g-PVTAZ and TAZC6027
图11两嵌段共聚物poly(1)-block-poly(2)的合成路线[28]
Fig.11The synthetic route of diblock copolymer poly(1)-block-poly(2)[28]
图123种增容剂2T-C60、4T-C60、8T-C60的化学结构[29]
Fig.12Chemical structures of 2T-C60, 4T-C60, 8T-C60[29]
图13P3HT-b-PS和P3HT-b-PS-C60的合成路线[30]
Fig.13The synthetic route of polymers P3HT-b-PS and P3HT-b-PS-C6030
图14(A)具有溴端基功能化P3HT-Br合成路线(上)及共混薄膜光交联的形貌示意图(下) [34];(B)溴端基功能化的窄带隙材料TPD-Br的分子结构[35];(C)溴端基功能化的窄带隙材料PBDTTT[36]
Fig.14(A)Synthesis of bromine-functionalized P3HT copolymers(top) and schematic representation of the photo-crosslinking approach(bottom)[34]; (B)molecular structure of the polymer TPD-Br[35], and (C)molecular structure of the polymer PBDTTT[36]
图15(A)P3HT-azide共聚物的合成路线以及作为空穴传输材料应用于耐溶剂的场效应晶体管和热稳定的有机光伏器件[38];(B)叠氮功能化的的P3HT通过固态反应与PC61BM交联从而固定共混薄膜的形貌[39]
Fig.15(A)Synthesis of P3HT-azide copolymers and their functions as a hole transporting material for solvent-resistant OTFTs and in situ compatibilizer for thermally stable OPVs[38]; (B)stabilization of the nanomorphology by solid state reaction of PC61BM with azide-functionalized conjugated polymer[39]
图16(A)PCBCB的合成路线[40];(B)PCBS和PCBSD的合成路线[41];(C)COF的合成路线[42]
Fig.16The synthetic route of PCBCB [40](A), PCBS/PCBSD[41](B) and COF(C)[42]
图17(A)交联剂sFPA的分子结构[43];(B)交联剂BABP的分子结构[44];(C)DAZH的合成(上)和交联与老化:光交联固定形貌,抑制聚合物在阴极以及PC61BM在薄膜内的聚集[45]
Fig.17Molecular structures of crosslinkerss FPA[43](A) and BABP[44](B); and (C)synthesis of the bis-azide small molecule crosslinker DAZH(top), crosslinking and thermal ageing(bottom):photocrosslinking should “lock” the as-cast morphology, conferring thermal stability, supressing formation of an electron-blocking polymer skin layer at the cathode, and fullerene crystals in the bulk[45]
图18P3MHOCT的热裂解反应:先裂解为P3CT,最后为PT[47]
Fig.18Thermo-cleavage reaction of P3MHOCT to P3CT and PT[47]
图19(A)PCPDTQx(2F) 3种材料P1-P3的化学结构;(B)P1~P3器件在85 ℃退火120 h的相对器件能量转换效率衰变曲线;(C)P1~P3:PC71BM器件活性层的初始及退火后的形貌透射电子显微镜照片(插图为选区电子衍射图)[54]
Fig.19(A)Chemical structures of P1, P2 and P3; relative eficiency decay profiles for the three PCPDTQx(2F):PC71BM polymer solar cells upon exposure to a temperature of 85 ℃ for 120 h; (C)TEM images(with SAED inserts) of the active layers of pristine and aged(120 h at 85 ℃) P1~P3:PC71BM polymer solar cells[54]
图20(A)PPDTBT、PPDTFBT和PPDT2FBT的分子结构;(B)3种材料的器件能量转换效率在130 ℃随热退火时间的能量转换效率变化曲线[55]
Fig.20(A)Chemical structures of PPDTBT, PPDTFBT and PPDT2FBT; (B)PCE evolutions as a function of annealing time at 130 ℃ of PPDTBT, PPDTFBT and PPDT2FBT devices[55]
图21(A)PDTSBT和PDTSBT-F化学结构式;(B)PDTSBT-F的器件在80 ℃条件热退火10 min、20 min的J-V曲线[56]
Fig.21(A)Chemical structures of PDTSBT and PDTSBT-F; (B)J-V curves of PDTSBT-F devices after annealing for 10 min and 20 min at 180 ℃[56]
图22(A)PBTT-DTFFBT和PBDT-DTFFBT化学结构式;(B)PDTSBT-F的器件在180 ℃条件热退火80 min的J-V曲线[57]
Fig.22(A)Chemical structures of PBTT-DTFFBT and PBDT-DTFFBT; (B)J-V curves of PBTT-DTFFBT devices after annealing for 80 min at 180 ℃[57]
图23(A)P1、P2和P3的分子结构;(B)P1~P3的归一化器件能量转换效率在130 ℃随热退火时间的能量转换效率变化曲线;(C)P3共混薄膜的形貌示意图,图中红色箭头表示PC71BM的迁移路径[58]
Fig.23(A)Chemical structures of P1, P2 and P3; (B)normalized PCE evolutions as a function of annealing time at 130 ℃ of P1~P3; (C)schematic diagram of P3 blend. The arrow in (C) represents the diffusion pathway of PC71BM molecules[58]
[1] Brabec C J,Sariciftci N S,Hummelen J C. Plast Solar Cells[J]. Adv Funct Mater,2001,11(1):15-26.
[2] Lu Z,Li C H,Du C,et al.6,7-Dialkoxy-2,3-diphenylquinoxaline Based Conjugated Polymers for Solar Cells with High Open-circuit Voltage[J]. Chinese J Polym Sci,2013,31(6):901-911.
[3] Liu Y,Zhao J,Li Z,et al.Aggregation and Morphology Control Enables Multiple Cases of High-efficiency Polymer Solarcells[J]. Nat Commun,2014,5:5293-5301.
[4] Yusoff A,Kim D,Kim H P,et al.A High Efficiency Solution Processed Polymer Inverted Triple-junction Solar Cell Exhibiting a Power Conversion Efficiency of 11.83%[J]. Energy Environ Sci,2015,8:303-316.
[5] J rgensen M,Norrman K,Gevorgyan S A,et al. Stability of Polymer Solar Cells[J]. Adv Mater,2012,24(5):580-612.
[6] Seo J H,Gutacker A,Sun Y,et al.Improved High Efficiency Organic Solar Cells via Incorporation of a Conjugated Polyelectrolyte Interlayer[J]. J Am Chem Soc,2011,133(22):8416-8419.
[7] Xu Z,Hsu C S,Yang Y,et al.Vertical Phase Separation in Poly(3-hexylthiophene):Fullerene Derivative Blends and Its Advantage for Inverted Structure Solar Cells[J]. Adv Energy Mater,2009,19(8):1227-1234.
[8] Grisorio R,Allegretta G,Mastrorilli P,et al.On the Degradation Process Involving Polyfluorenes and the Factors Governing Their Spectral Stability[J]. Macromolecules,2011,44(20):7977-7986.
[9] Jørgensen M,Norrman K,Krebs F C,et al.Stability/degradation of Polymer Solar Cells[J]. Sol Energy Mater Sol Cells,2008,92(7):686-714.
[10] Pan C,Li H,Akgun B,et al.Enhancing the Efficiency of Bulk Heterojunction Solar Cells via Templated Self-Assembly[J]. Macromolecules,2013,46(5):1812-1819.
[11] Fischer F,Tremel K,Saur A K,et al.Influence of Processing Solvents on Optical Properties and Morphology of a Semicrystalline Low Bandgap Polymer in the Neutral and Charged States[J]. Macromolecules,2013,46(12):4924-4931.
[12] Jo J,Kim S S,Na S I,et al.Time-Dependent Morphology Evolution by Annealing Processes on Polymer:Fullerene Blend Solar Cells[J]. Adv Funct Mater,2009,19(6):866-874.
[13] Lu G,Li L,Yang X N,et al.Achieving Perpendicular Alignment of Rigid Polythiophene Backbones to the Substrate by Using Solvent-vapor Treatment[J]. Adv Mater,2007,19(21):3594-3598.
[14] Yang X N,Loo J. Toward High-performance Polymer Solar Cells:The Importance of Morphology Control[J]. Macromolecules,2007,40(5):1353-1362.
[15] Müller C. On the Glass Transition of Polymer Semiconductors and Its Impact on Polymer Solar Cell Stability[J]. Chem Mater,2015,27(8):2740-2754.
[16] Yang X,Duren J K,Janssen R A,et al.Morphology and Thermal Stability of the Active Layer in Poly(p-phenylenevinylene)/Methanofullerene Plastic Photovoltaic Devices[J]. Macromolecules,2004,37(6):2151-2158.
[17] Bertho S,Janssen G,Cleij T J,et al.Effect of Temperature on the Morphological and Photovoltaic Stability of Bulk Heterojunction Polymer:Fullerene Solar Cells[J]. Sol Energy Mater Sol Cells,2008,92(7):753-760.
[18] Yang X N,Duren J K,Rispens M T,et al.Crystalline Organization of a Methanofullerene as Used for Plastic Solar Cell Applications[J]. Adv Mater,2004,16(9/10):802-806.
[19] Yang X N,Loos J,Veenstra S C,et al.Nanoscale Morphology of High-performance Polymer Solar Cells[J]. NANO Lett,2005,5(4):579-583.
[20] Lin C,Lin E Y,Tsai F Y. Enhanced Thermal Stability and Efficiency of Polymer Bulk-Heterojunction Solar Cells by Low-Temperature Drying of the Active Layer[J]. Adv Funct Mater,2010,20(5):834-839.
[21] Li L G,Jacobs D L,Yang X M,et al.Poly(3-hexylthiophene) Nanofiber Networks for Enhancing the Morphology Stability of Polymer Solar Cells[J]. Org Electron,2013,14(5):1383-1390.
[22] Li L G,Lu G H,Yang X N. Improving Performance of Polymer Photovoltaic Devices Using an Annealing-free Approach via Construction of Ordered Aggregates in Solution[J]. J Mater Chem,2008,18(17):1984-1990.
[23] Yang X N,Alexeev A, Michels M A J,et al. Effect of Spatial Confinement on the Morphology Evolution of Thin Poly(p-phenylenevinylene)/Methanofullerene Composite Films[J]. Macromolecules,2005,38(10):4289-4295.
[24] Wang S S,Qu Y P,Yang X N,et al.Improved Thermal Stability of Polymer Solar Cells by Incorporating Porphyrins[J]. Adv Funct Mater,2014,25,8464-8467.
[25] Wang S S,Wang M Y,Yang X N,et al.Selection Strategy of Porphyrins for Achieving Thermally Stable Polymer Solar Cells[J]. J Mater Chem A,2015,3(42):21051-21059.
[26] Li Z,Chiu K,Durrant J R,et al.Toward Improved Lifetimes of Organic Solar Cells under Thermal Stress:Substrate-Dependent Morphological Stability of PCDTBT:PCBM Films and Devices[J]. Sci Rep,2015,5:15149.
[27] Zhou Z,Chen X,Holdcroft S. Stabilizing Bicontinuous Nanophase Segregation in πCP-C60 Donor-Acceptor Blends[J]. J Am Chem Soc,2008,130(35):11711-11718.
[28] Sivula K,Ball Z T,Fréchet J M,et al.Amphiphilic Diblock Copolymer Compatibilizers and Their Effect on the Morphology and Performance of Polythiophene:Fullerene Solar Cells[J]. Adv Mater,2006,18(2):206-210.
[29] Kim J B,Allen K,Loo Y L,et al.Small-Molecule Thiophene-C60 Dyads as Compatibilizers in Inverted Polymer Solar Cells[J]. Chem Mater,2010,22(20):5762-5773.
[30] Raissi M,Erothu H,Ibarboure E,et al.Fullerene-capped Copolymers for Bulk Heterojunctions:Device Stability and Efficiency Improvements[J]. J Mater Chem A,2015,3(35):18207-18221.
[31] Yau C P,Wang S,Heeney M,et al.Investigation of Radical and Cationic Cross-Linking in High-Efficiency, Low Band Gap Solar Cell Polymers[J]. Adv Energy Mater,2014,5(2):1401228.
[32] Guillaume W,Lionel D,Christine D L,et al.Stabilizing Polymer-based Bulk Heterojunction Solar Cells via Crosslinking[J]. Polym Int,2014,63(8):1346-1361.
[33] Rumer J W, McCulloch I. Organic Photovoltaics:Crosslinking for Optimal Morphology and Stability[J]. Mater Today,2015,18(8):425-435.
[34] Kim B J,Miyamoto Y, Fr chet J M J, et al. Photocrosslinkable Polythiophenes for Efficient, Thermally Stable, Organic Photovoltaics[J]. Adv Energy Mater,2009,19(14):2273-2281.
[35] Griffin G,Douglas J D, Fréchet J M J, et al. Long-Term Thermal Stability of High-Efficiency Polymer Solar Cells Based on Photocrosslinkable Donor-Acceptor Conjugated Polymers[J]. Adv Mater,2011,23(14):1660-1664.
[36] Qian D,Xu Q,Tan Z A,et al.Stabilization of the Film Morphology in Polymer:Fullerene Heterojunction Solar Cells with Photocrosslinkable Bromine-functionalized Low-bandgap Copolymers[J]. J Polym Sci A Polym Chem,2013,51(15):3123-3131.
[37] Xu Q,Wang F,Tan Z A,et al.Construction of Planar and Bulk Integrated Heterojunction Polymer Solar Cells Using Cross-Linkable D-A Copolymer[J]. ACS Appl Mater Interfaces,2013,5(14):6591-6597.
[38] Kim H J,Han A R, Fréchet J M J, et al. Solvent-Resistant Organic Transistors and Thermally Stable Organic Photovoltaics Based on Cross-linkable Conjugated Polymers[J]. Chem Mater,2012,24(1):215-221.
[39] Gholamkhass B,Holdcroft S. Toward Stabilization of Domains in Polymer Bulk Heterojunction Films[J]. Chem Mater,2010,22(18):5371-5376.
[40] Deb N,Dasari R R,Moudgil K,et al.Thermo-cross-linkable Fullerene for Long-term Stability of Photovoltaic Devices[J]. J Mater Chem A,2015,3:21856-21863.
[41] Cheng Y J,Hsieh C H,Hsu C S,et al.Morphological Stabilization by in Situ Polymerization of Fullerene Derivatives Leading to Efficient, Thermally Stable Organic Photovoltaics[J]. Adv Energy Mater,2011,21(9):1723-1732.
[42] Chen C P,Huang C Y,Chuang S C. Highly Thermal Stable and Efficient Organic Photovoltaic Cells with Crosslinked Networks Appending Open-Cage Fullerenes as Additives[J]. Adv Funct Mater,2014,25:1616-3028.
[43] Liu B,Png R Q, Ho P K H, et al. High Internal Quantum Efficiency in Fullerene Solar Cells based on Crosslinked Polymer Donor Networks[J]. Nat Commun,2012,3:1321-1328.
[44] Png R Q,Chia P J, Ho P K H, et al. High-performance Polymer Semiconducting Heterostructure Devices by Nitrene-mediated Photocrosslinking of Alkyl Side Chains[J]. Nat Mater,2010,9(2):152-158.
[45] Derue L,Dautel O,Wantz G,et al.Thermal Stabilisation of Polymer Fullerene Bulk Heterojunction Morphology for Efficient Photovoltaic Solar Cells[J]. Adv Mater,2014,26(33):5831-5838.
[46] Rumer J W,Ashraf R S, McCulloch I, et al. Dual Function Additives: A Small Molecule Crosslinker for Enhanced Efficiency and Stability in Organic Solar Cells[J]. Adv Energy Mater,2015,5(9):1401426.
[47] Jinsong L,Kadnikova E N, Fréchet J M J, et al. Polythiophene Containing Thermally Removable Solubilizing Groups Enhances the Interface and the Performance of Polymer?Titania Hybrid Solar Cells[J]. J Am Chem Soc,2004,126(31):9486-9487.
[48] Gevorgyan S A,Krebs F C. Bulk Heterojunctions Based on Native Polythiophene[J]. Chem Mater,2008,20(13):4386-4390.
[49] Krebs F C,Spanggaard H. Significant Improvement of Polymer Solar Cell Stability[J]. Chem Mater,2005,17(21):5235-5237.
[50] Krebs F C,Norrman K. Analysis of the Failure Mechanism for a Stable Organic Photovoltaic During 10000 h of Testing[J]. Prog Photovolt Res Appl,2007,15(8):697-712.
[51] Krebs F C,Norrman K. Using Light-induced Thermocleavage in a Roll-to-roll Process for Polymer Solar Cells[J]. ACS Appl Mater Interfaces,2010,2(3):877-887.
[52] Helgesen M,Krebs F C. Photovoltaic Performance of Polymers Based on Dithienylthienopyrazines Bearing Thermocleavable Benzoate Esters[J]. Macromolecules,2010,43(3):1253-1260.
[53] Sivula K,Luscombe C K, Fr chet J M J, et al. Enhancing the Thermal Stability of Polythiophene: Fullerene Solar Cells by Decreasing Effective Polymer Regioregularity[J]. J Am Chem Soc,2006,128(43):13988-13989.
[54] Verstappen P,Kesters J,Maes W,et al.Simultaneous Enhancement of Solar Cell Efficiency and Stability by Reducing the Side Chain Density on Fluorinated PCPDTQx Copolymers[J]. Macromolecules,2015,48(12):3873-3882.
[55] Nguyen T L,Choi H,Woo H Y,et al.Semi-crystalline Photovoltaic Polymers with Efficiency Exceeding 9% in a [similar]300 nm Thick Conventional Single-cell Device[J]. Energ Environ Sci,2014,7(7):3040-3051.
[56] LYU H Y, Zhao X L, Yang X N,et al.Fluorinated Low Band Gap Copolymer Based on Dithienosilole-benzothiadiazole for High-performance Photovoltaic Device[J]. Polym Chem,2014,5(21):6279-6286.
[57] Zhao X L,LYU H Y,Yang X N,et al.A Novel Crystallizable Low Band Gap Polymer for High-efficiency Polymer Photovoltaic Cells[J]. J Polym Sci Part a:Polym Chem,2016,54(1):44-48
[58] Li Z,Wu F,Yang X N,et al.Side-Chain Engineering for Enhancing the Thermal Stability of Polymer Solar Cells[J]. Adv Mater,2015,27(43):6999-7003.
[59] Mukherjee S,Proctor C M,Bazan G C,et al.Solar Cells: Significance of Average Domain Purity and Mixed Domains on the Photovoltaic Performance of High-Efficiency Solution-Processed Small-Molecule BHJ Solar Cells[J]. Adv Energy Mater,2015,5(21):1500877.
[1] 吴江1 谢志元1* 郭世杰2*. 基底温度对刮涂制备的P3HT:PCBM薄膜形貌和光伏电池性能的影响[J]. 应用化学, 2012, 29(12): 1417-1422.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
 Chinese Journal of Applied Chemistry
地址:长春市人民大街5625号 邮编:130022
电话:0431-85262016 85262330 传真:0431-85685653 E-mail: yyhx@ciac.ac.cn