[1] | Wang M,Jiang C,Zhang S,et al. Reversible Calcium Alloying Enables a Practical Room-Temperature Rechargeable Calcium-Ion Battery with a High Discharge Voltage[J]. Nat Chem,2018,10(6):667-672. | [2] | Wang F,Borodin O,Gao T,et al. Highly Reversible Zinc Metal Anode for Aqueous Batteries[J]. Nat Mater,2018,17(6):543-549. | [3] | Wang G,Yu M,Wang J,et al. Self-Activating, Capacitive Anion Intercalation Enables High-Power Graphite Cathodes[J]. Adv Mater,2018,30(20):1800533. | [4] | Ma Y,Chang H,Zhang M,et al. Graphene-based Materials for Lithium-Ion Hybrid Supercapacitors[J]. Adv Mater,2015,27(36):5296-5308. | [5] | Augustyn V,Come J,Lowe M A,et al. High-rate Electrochemical Energy Storage Through Li+ Intercalation Pseudocapacitance[J]. Nat Mater,2013,12(6):518-522. | [6] | Kim H,Cook J B,Lin H,et al. Oxygen Vacancies Enhance Pseudocapacitive Charge Storage Properties of MoO3-x[J]. Nat Mater,2017,16(5):454-460. | [7] | Lukatskaya M,Kota S,Lin Z,et al. Ultra-high-rate Pseudocapacitive Energy Storage in Two-Dimensional Transition Metal Carbides[J]. Nat Energy,2017,2(8):17105. | [8] | Chen K,Song S,Liu F,et al. Structural Design of Graphene for Use in Electrochemical Energy Storage Devices[J]. Chem Soc Rev,2015,44(17):6230-6257. | [9] | Zhai T,Sun S,Liu X,et al. Achieving Insertion-Like Capacity at Ultrahigh Rate via Tunable Surface Pseudocapacitance[J]. Adv Mater,2018,30(12):1706640. | [10] | Soto F,Yan P,Engelhard M H,et al. Tuning the Solid Electrolyte Interphase for Selective Li- and Na-Ion Storage in Hard Carbon[J]. Adv Mater,2017,29(18):1606860. | [11] | Liu K,Pei A,Lee H R,et al. Lithium Metal Anodes with an Adaptive “Solid-Liquid” Interfacial Protective Layer[J]. J Am Chem Soc,2017,139(13):4815-4820. | [12] | Choi J W,Aurbach D,Promise and Reality of Post-lithium-ion Batteries with High Energy Densities[J]. Nat Rev Mater,2016,1(4):16013. | [13] | Seo D,Lee J,Urban A,et al. The Structural and Chemical Origin of the Oxygen Redox Activity in Layered and Cation-disordered Li-Excess Cathode Materials[J]. Nat Chem,2016,8(7):692-697. | [14] | Assat G,Tarascon J.Fundamental Understanding and Practical Challenges of Anionic Redox Activity in Li-Ion Batteries[J]. Nat Energy,2018,3:373-386. | [15] | Yu M,Lin D,Feng H,et al. Boosting the Energy Density of Carbon-based Aqueous Supercapacitors by Optimizing the Surface Charge[J]. Angew Chem Int Ed,2017,56(20):5454. | [16] | Chen K F,Xue D F.Colloidal Supercapattery:Redox Ions in Electrode and Electrolyte[J]. Chem Rec,2018,18(3):282-292. | [17] | Chen K F,Xue D F.Colloidal Paradigm in Supercapattery Electrode Systems[J]. Nanotechnology,2018,29(2):024003. | [18] | Chen K F,Xue D F.Rare Earth and Transitional Metal Colloidal Supercapacitors[J]. Sci China Technol Sci,2015,58(11):1768-1778. | [19] | CHEN Ke.Applications of Colloids in Glass Researches[J]. Acta Phys Sin,2017,66(17):178201(in Chinese). 陈科. 胶体在非晶研究中的应用[J]. 物理学报,2017,66(17):178201. | [20] | YANG Yuesuo,WANG Yuanyuan,SONG Xiaoming,et al. Co-transport of Colloids and Facilitated Contaminants in Subsurface Environment[J]. CIESC J,2017,68(1):23-36(in Chinese). 杨悦锁,王园园,宋晓明,等. 土壤和地下水环境中胶体与污染物共迁移研究进展[J]. 化工学报,2017,68(1):23-36(in Chinese). | [21] | ZHOU Chao,WANG Wei,ZHANG Hepeng.Individual Behaviors and Dynamic Self-assembly of Active Colloids[J]. Chinese Sci Bull,2017,62(2/3):194-208(in Chinese). 周超,王威,张何朋. 活性胶体的个体行为与动态自组装[J]. 科学通报,2017,62(2/3):194-208. | [22] | LU Changyu.Performance Studies of Silica Gel Electrolytes on Rechargeable Hybrid Aqueous Batteries[D]. Xi'an:Chang'an University,2017(in Chinese). 卢昶雨. 混合水系锂离子电池二氧化硅胶体电解液的性能研究[D]. 西安:长安大学,2017. | [23] | Liu C,Neale Z G,Cao G.Understanding Electrochemical Potentials of Cathode Materials in Rechargeable Batteries[J]. Mater Today,2016,19(2):109-123. | [24] | Yoo H D,Markevich E,Salitra G,et al. On the Challenge of Developing Advanced Technologies for Electrochemical Energy Storage and Conversion[J]. Mater Today,2014,17(3):110-121. | [25] | Billaud J,Eames C,Tapia-Ruiz N,et al. Evidence of Enhanced Ion Transport in Li-Rich Silicate Intercalation Materials[J]. Adv Energy Mater,2017,7(11):1601043. | [26] | Lee J,Kitchaev D A,Kwon D,et al. Reversible Mn2+/Mn4+ Double Redox in Lithium-Excess Cathode Materials[J]. Nature,2018,556(7700):185-190. | [27] | Housel L M,Wang L,Abraham A,et al. Investigation of α-MnO2 Tunneled Structures as Model Cation Hosts for Energy Storage[J]. Acc Chem Res,2018,51(3):575-582. | [28] | Chen K,Xue D.Materials Chemistry Toward Electrochemical Energy Storage[J]. J Mater Chem A,2016,4(20):7522-7537. | [29] | Schmuch R,Wagner R,Hörpel G,et al. Performance and Cost of Materials for Lithium-based Rechargeable Automotive Batteries[J]. Nat Energy,2018,3(4):267-278. | [30] | Chen K,Xue D.Colloidal Supercapacitor Electrode Materials[J]. Mater Res Bull,2016,83:201-206. | [31] | CHEN Kunfeng,XUE Dongfeng.Colloidal Ion Supercapacitor[J]. J Electrochem,2015,21(6):534-542(in Chinese). 陈昆峰,薛冬峰. 胶体离子超级电容器[J]. 电化学,2015,21(6):534-542. | [32] | Winter M,Brodd R J. What Are Batteries, Fuel Cells,Supercapacitors[J]. Chem Rev,2004,104(10):4245-4269. | [33] | LI Songlin,ZHOU Yaping,LIU Junji. Physical Chemistry(Fifth Edition)[M]. Beijing:Higher Education Press,2010:324-326(in Chinese). 李松林,周亚平,刘俊吉. 物理化学(第五版下册) [M]. 北京:高等教育出版社,2010:324-326. | [34] | LU Xia,LI Hong.Fundamental Scientific Aspects of Lithium Batteries(Ⅱ)-Defect Chemistry in Battery Materials[J]. Energy Storage Sci Technol,2013,2(2):157-164(in Chinese). 卢侠,李泓. 锂电池基础科学问题(Ⅱ)-电池材料缺陷化学[J]. 储能科学与技术,2013,2(2):157-164. | [35] | YANG Yong.Solid State Electrochemistry[M]. Beijing:Chemical Industry Press,2017:266-302(in Chinese). 杨勇. 固态电化学[M]. 北京:化学工业出版社,2017:266-302. | [36] | Chen K,Xue D.Nanofabrication Strategies for Advanced Electrode Materials[J]. Nanofabrication,2017,3(1):1-15. | [37] | Chen K,Xue D.Ionic Supercapacitor Electrode Materials:A System-Level Design of Electrode and Electrolyte for Transforming Ions into Colloids[J]. Colloids Interface Sci Commun,2014,1(1):39-42. | [38] | Zhu C,Usiskin R E,Yu Y,et al. The Nanoscale Circuitry of Battery Electrodes[J]. Science,2017,358(6369):eaao2808. | [39] | Chen C,Maie J.Decoupling Electron and Ion Storage and the Path from Interfacial Storage to Artificial Electrodes[J]. Nat Energy,2018,3(2):102-108. | [40] | Dubal D P,Chodankar N R,Kim D H,et al. Towards Flexible Solid-State Supercapacitors for Smart and Wearable Electronics[J]. Chem Soc Rev,2018,47(6):2065-2129. | [41] | LI Gong,CHEN Kunfeng,JIN Jingye,et al. La3+-doped NiCo Layered Double Hydroxide Nanosheets and Their Supercapacitive Performance[J]. Chinese J Appl Chem,2017,34(1):71-75(in Chinese). 李宫,陈昆峰,金京一,等. La3+掺杂NiCo层状双金属氢氧化物纳米片的合成及其电化学性能[J]. 应用化学,2017,34(1):71-75. | [42] | Amin R,Maier J,Balaya P,et al. Ionic and Electronic Transport in Single Crystalline LiFePO4 Grown by Optical Floating Zone Technique[J]. Solid State Ion,2008,179(27/32):1683-1687. | [43] | Park M,Zhang X,Chung M,et al. A Review of Conduction Phenomena in Li-Ion Batteries[J]. J Power Sources,2010,195(24):7904-7929. | [44] | Kaskhedikar N A,Maier J.Lithium Storage in Carbon Nanostructures[J]. Adv Mater,2009,21(25/36):2664-2680. | [45] | Kuhne M,Paolucci F,Popovic J,et al. Ultrafast Lithium Diffusion in Bilayer Graphene[J]. Nat Nanotechnol,2017,12(9):895-900. | [46] | Liu M,Lin C,Gu Y,et al. Oxygen Reduction Contributing to Charge Transfer During the First Discharge of the CeO2-Bi2Fe4O9-Li Battery:In Situ X-ray Diffraction and X-ray Absorption Near-Edge Structure Investigation[J]. J Phys Chem C,2014,118(27):14711-14722. | [47] | Liang X,Chen K,Xue D.A Flexible and Ultrahigh Energy Density Capacitor via Enhancing Surface/Interface of Carbon Cloth Supported Colloids[J]. Adv Energy Mater,2018,8:1703329. | [48] | Wang J,Polleux J,Lim J,et al. Pseudocapacitive Contributions to Electrochemical Energy Storage in TiO2(Anatase) Nanoparticles[J]. J Phys Chem C,2007,111(40):14925-14931. | [49] | Mitchell J B,Lo W C,Genc A,et al. Transition from Battery to Pseudocapacitor Behavior via Structural Water in Tungsten Oxide[J]. Chem Mater,2017,29(9):3928-3937. | [50] | CHEN Kunfeng,XUE Dongfeng.Evaluation of Special Capacitance of Colloidal Ionic Supercapacitor System[J]. Chinese J Appl Chem,2016,33(1):18-24(in Chinese). 陈昆峰,薛冬峰. 胶体离子超级电容器的比容量评价[J]. 应用化学,2016,33(1):8-24(in Chinese). | [51] | LIANG Xitong,PAN Wei,CHEN Kunfeng,et al. Research and Development of Novel Supercapacitors[J]. Chinese J Appl Chem,2016,33(8):867-875(in Chinese). 梁晰童,潘伟,陈昆峰,等. 新型超级电容器的研发进展[J]. 应用化学,2016,33(8):867-875. | [52] | Chen K,Xue D.High Energy Density Hybrid Supercapacitor:In-Situ Functionalization of Vanadium-based Colloidal Cathode[J]. ACS Appl Mater Interfaces,2016,8(43):29522-29528. | [53] | Chen K,Xue D,Sridhar K.Colloidal Pseudocapacitor:Nanoscale Aggregation of Mn Colloids from MnCl2 under Alkaline Condition[J]. J Power Sources,2015,279(1):365-371. | [54] | Chen X,Chen K,Wang H,et al. A Colloidal Pseudocapacitor:Direct Use of Fe(NO3)3 in Electrode Can Lead to a High Performance Alkaline Supercapacitor System[J]. J Colloid Interface Sci,2015,444(1):49-57. | [55] | Chen K,Yang Y,Li K,et al. CoCl2 Designed as Excellent Pseudocapacitor Electrode Materials[J]. ACS Sustainable Chem Eng,2014,2(3):440-444. | [56] | Chen K,Xue D.In situ Electrochemical Activation of Ni-based Colloids from an NiCl2 Electrode and Their Advanced Energy Storage Performance[J]. Nanoscale,2016,8(39):17090-17095. | [57] | Chen K,Song S,Li K,et al. Water-soluble Inorganic Salts with Ultrahigh Specific Capacitance:Crystallization Transformation Investigation of CuCl2 Electrodes[J]. CrystEngComm,2013,15(47):10367-10373. | [58] | Chen K F,Xue D F.Crystallization of Tin Chloride for Promising Pseudocapacitor Electrode[J]. CrystEngComm,2014,16(21):4610-4618. | [59] | Chen K F,Xue D F.Water-soluble Inorganic Salt with Ultrahigh Specific Capacitance:Ce(NO3)3 can be Designed as Excellent Pseudocapacitor Electrode[J]. J Colloid Interface Sci,2014,416(1):172-176. | [60] | Chen K,Xue D.YbCl3 Electrode in Alkaline Aqueous Electrolyte with High Pseudocapacitance[J]. J Colloid Interface Sci,2014,424(1):84-89. | [61] | Chen K,Xue D.Formation of Electroactive Colloids via in-Situ Coprecipitation under Electric Field: Erbium Chloride Alkaline Aqueous Pseudocapacitor[J]. J Colloid Interface Sci,2014,430(1):265-271. | [62] | Chen X,Chen K,Wang H,et al. Crystallization of Fe3+ in an Alkaline Aqueous Pseudocapacitor System[J]. CrystEngComm,2014,16(29):6707-6715. | [63] | Chen K,Song S,Xue D.An Ionic Aqueous Pseudocapacitor System:Electroactive Ions in Both Salt-Electrode and Redox-Electrolyte[J]. RSC Adv,2014,4(44):23338-23343. | [64] | Chen K,Yin S,Xue D.Binary AxB1-x Ionic Alkaline Pseudocapacitor System Involving Manganese, Iron, Cobalt, and Nickel:Formation of Electroactive Colloids via in-Situ Electric Field Assisted Coprecipitation[J]. Nanoscale,2015,7(3):1161-1166. | [65] | Chen X,Chen K,Wang H,et al. Functionality of Fe(NO3)3 Salts as Both Positive and Negative Pseudocapacitor Electrodes in Alkaline Aqueous Electrolyte[J]. Electrochim Acta,2014,147(1):216-224. |
|