应用化学 ›› 2018, Vol. 35 ›› Issue (9): 1067-1075.DOI: 10.11944/j.issn.1000-0518.2018.09.180164

• 综合评述 • 上一篇    下一篇

离子的胶体状态与其电化学储能极限

陈昆峰,薛冬峰()   

  1. 中国科学院长春应用化学研究所,稀土资源利用国家重点实验室 长春 130022
  • 收稿日期:2018-05-09 接受日期:2018-05-15 出版日期:2018-09-01 发布日期:2018-08-06
  • 通讯作者: 薛冬峰
  • 基金资助:
    国家自然科学基金项目(21521092)中国科学院国际合作局对外合作项目(121522KYS820150009)吉林省自然科学基金项目(20170101092JC)资助.

Colloidal State of Active Cation and Its Limit for Electrochemical Energy Storage

CHEN Kunfeng,XUE Dongfeng()   

  1. State Key Laboratory of Rare Earth Resource Utilization,Changchun Institute of Applied Chemistry,Chinese Academy of Sciences,Changchun 130022,China
  • Received:2018-05-09 Accepted:2018-05-15 Published:2018-09-01 Online:2018-08-06
  • Contact: XUE Dongfeng
  • Supported by:
    Supported by the National Natural Science Foundation of China(No.21521092), the External Cooperation Program of BIC, Chinese Academy of Sciences(No.121522KYS820150009), the Jilin Provincial Science and Technology Development Program(No.20170101092JC)

摘要:

阳离子氧化还原化学是电化学储能技术中最核心的储能机理,如何高效快速利用氧化还原活性阳离子是发展兼具高功率密度与高能量密度储电技术的关键。 处于胶体状态的阳离子可形成热力学平衡态和非平衡态,具有高反应活性和低离子迁移势垒,展现出独特的电化学特性。 本文着重介绍氧化还原活性阳离子的胶体状态与其在电化学储能上的应用,并从热力学和动力学方面阐述其储能机理,以及活性胶体离子电极和超级电容电池的构筑。 利用胶体的高比表面积、高离子吸附能力和荷电离子梯度分布等特性,创造性地构筑胶体超级电容电池,解决了现有电化学储能电极材料体系中高容量与高功率不能兼具的问题,同时开拓了胶体体系新的应用方向。

关键词: 氧化还原离子, 超级电容器, 电池, 电化学储能, 电活性胶体

Abstract:

Cation redox chemistry is the most important energy storage mechanism of electrochemical energy storage technology. How to utilize redox active cations efficiently and quickly is the key to the development of electrical storage technology with both high power density and high energy density. The cationic state in colloid state can form thermodynamic equilibrium state and non-equilibrium state with high reactivity and fast reaction kinetics. In this paper, the colloidal state and the electrochemical energy storage limit of redox active cations are introduced, and the energy storage mechanism and the construction of the active colloid ion electrode are described from viewpoint of thermodynamics and kinetics. Using the high specific surface area of colloid, high ion adsorption capacity, and charge ion gradient distribution, the creative colloid supercapacitor battery solves the problem that the existing electrochemical energy storage materials can not have both high energy and high power, and the new application direction of the colloid system is also opened up.

Key words: redox ions, supercapacitors, batteries, electrochemical energy storage, electroactive colloids