[1] | Tai Z X,Chandrasekar M S,Chou S L,et al. Few Atomic Layered Lithium Cathode Materials to Achieve Ultrahigh Rate Capability in Lithium-Ion Batteries[J]. Adv Mater,2017,29(34):1700605. | [2] | Wang J L,Xu T T,Huang X,et al. Recent Progress of Silicon Composites as Anode Materials for Secondary Batteries[J]. RSC Adv,2016,6(90):87778-87790. | [3] | Wang Z Y,He W,Zhang X D,et al. Multilevel Structures of Li3V2(PO4)3/Phosphorus-Doped Carbon Nanocomposites Derived from Hybrid V-MOFs for Long-Life and Cheap Lithium Ion Battery Cathodes[J]. J Power Sources,2017,366(10):9-17. | [4] | Zhao L P,Wang H Y,Qi L.MoS2 Being Used as Negative Electrode for Asymmetric Electrochemical Capacitors[J]. J Inorg Mater,2013,28(8):831-835. | [5] | Xu J T,Javeed M,Dou Y H,et al. 2D Frameworks of C2N and C3N as New Anode Materials for Lithium-Ion Batteries[J]. Adv Mater,2017,29(34):1702007. | [6] | Feng R,Wang L W,Lu Z Y,et al. Carbon Nanocages Supported LiFePO4 Nanoparticles as High-Performance Cathode for Lithium Ion Batteries[J]. Acta Chim Sin,2014,72(6):653-657. | [7] | Lin N,Jia Z,Wang Z H,et al. Understanding the Crack Formation of Graphite Particles in Cycled Commercial Lithium-Ion Batteries by Focused Ion Beam-Scanning Electron Microscopy[J]. J Power Sources,2017,365(10):235-239. | [8] | Zhu J H,Yang J,Zhou J L,et al. A Stable Organic-Inorganic Hybrid Layer Protected Lithium Metal Anode for Long-Cycle Lithium-Oxygen Batteries[J]. J Power Sources,2017,366(10):265-269. | [9] | Abada S,Marlair G,Lecocq A,et al. Safety Focused Modeling of Lithium-Ion Batteries:A Review[J]. J Power Sources,2016,306(2):178-192. | [10] | Berecibar M,Gandiaga I,Villarreal I,et al. Critical Review of State of Health Estimation Methods of Li-Ion Batteries for Real Applications[J]. Renew Sustainable Energy Rev,2016,56(4):572-587. | [11] | WANG Hong,ZHANG Weide.Surface-Coating Modification of Li-Rich Cathode Materials Li[Li0.2Mn0.4Fe0.4]O2[J]. Chinese J Appl Chem,2013,30(6):705-709(in Chinese). 王洪,张伟德. 富锂正极材料Li[Li0.2Mn0.4Fe0.4]O2的表面包覆改性[J]. 应用化学,2013,30(6):705-709. | [12] | TANG Anping,LIU Lihua,XU Guorong,et al. Progress in Borate Electrode Materials for Lithium Ion Batteries[J]. Chinese J Appl Chem,2012,29(11):1221-1230(in Chinese). 唐安平,刘立华,徐国荣,等. 锂离子电池硼酸盐电极材料的研究进展[J]. 应用化学,2012,29(11):1221-1230. | [13] | YU Zhongbao,ZHANG Shengli,YANG Shuting,et al. Effects of Sintering Temperature on the Structure and Electrochemical Property of LiCoO2[J]. Chinese J Appl Chem,2012,16(4):102-104(in Chinese). 余仲宝,张胜利,杨书廷,等. 烧结温度对锂离子电池正极材料LiCoO2结构与电话学性能的影响[J]. 应用化学,2012,16(4):102-104. | [14] | Kim S W,Seo D H,Ma X H,et al. Electrode Materials for Rechargeable Sodium-Ion Batteries:Potential Alternatives to Current Lithium-Ion Batteries[J]. Adv Energy Mater,2012,2(7):710-721. | [15] | Wang C C,Wang L B,Li F J,et al. Bulk Bismuth as a High-Capacity and Ultralong Cycle-Life Anode for Sodium-Ion Batteries by Coupling with Glyme-Based Electrolytes[J]. Adv Mater,2017,29(35):1702212. | [16] | Guo J Z,Wang P F,Wu X L,et al. High-Energy/Power and Low-Temperature Cathode for Sodium-Ion Batteries:In Situ XRD Study and Superior Full-Cell Performance[J]. Adv Mater,2017,29(33):1701968. | [17] | Palomares V,Serras P,Villaluenga I,et al. Na-Ion Batteries, Recent Advances and Present Challenges to Become Low Cost Energy Storage Systems[J]. Energy Environ Sci,2012,5(3):5884-5901. | [18] | Yabuuchi N,Kajiyama M,Iwatate J,et al. P2-type Nax[Fe1/2Mn1/2]O2 Made from Earth-Abundant Elements for Rechargeable Na Batteries[J]. Nat Mater,2012,11(4):512-517. | [19] | Komaba S,Yabuuchi N,Nakayama T,et al. Study on the Reversible Electrode Reaction of Na1-xNi0.5Mn0.5O2 for a Rechargeable Sodium-Ion Battery[J]. Inorg Chem,2012,51(11):6211-6220. | [20] | Lu Z,Dahn J R.In Situ X-Ray Diffraction Study of P2-Na2/3[Ni1/3Mn2/3]O2[J]. J Electrochem Soc,2001,148(11):A1225-A1229. | [21] | ZHAO Liping,CAI Xingnan,WANG Hongyu,et al. Molybdenum Trioxide—A New Type Negative Electrode Materials for Electric Energy Storage Devices Using Na+-Based Organic Electrolytes[J]. Chinese J Appl Chem,2017,34(3):262-268(in Chinese). 赵立平,蔡兴楠,王宏宇,等. 三氧化钼—一种新型有机系钠离子储能器件负极材料[J]. 应用化学,2017,34(3):262-268. | [22] | Komaba S,Takei C,Nakayama T,et al. Electrochemical Intercalation Activity of Layered NaCrO2 vs. LiCrO2[J]. Electrochem Commun,2010,12(3):355-358. | [23] | ZHAO Liping,QI Li,WANG Hongyu.MoO3/Activated Carbon Sodium-ion Electrochemical Capacitors[J]. Chinese J Appl Chem,2013,30(10):1189-1193(in Chinese). 赵立平,齐力,王宏宇. 三氧化钼/活性炭钠离子电化学电容器[J]. 应用化学,2013,30(10):1189-1193. | [24] | Abouimrane A,Weng W,Eltayeb H,et al. Sodium Insertion in Carboxylate Based Materials and Their Application in 3.6 V Full Sodium Cells[J]. Energy Environ Sci,2012,5(11):9632-9638. | [25] | Komaba S,Murata W,Ishikawa T,et al. Electrochemical Na Insertion and Solid Electrolyte Interphase for Hard-Carbon Electrodes and Application to Na-Ion Batteries[J]. Adv Funct Mater,2011,21(20):3859-3867. | [26] | Zhao L P,Qi L,Wang H Y.MoS2 C/Graphite, An Electric Energy Storage Device Using Na+-Based Organic Electrolytes[J]. RSC Adv,2015,5(1):15431-15437. | [27] | Stevens D A,Dahn J R.High Capacity Anode Materials for Rechargeable Sodium-Ion Batteries[J]. J Electrochem Soc,2000,147(4):1271-1273. | [28] | Stevens D A,Dahn J R.An In Situ Small-Angle X-ray Scattering Study of Sodium Insertion into a Nanoporous Carbon Anode Material Within an Operating Electrochemical Cell[J]. J Electrochem Soc,2000,147(12):4428-4431. | [29] | Alcántara R,Lavela P,Ortiz G F,et al. Carbon Microspheres Obtained from Resorcinol-Formaldehyde as High-Capacity Electrodes for Sodium-Ion Batteries[J]. Electrochem Solid State Lett,2005,8(4):A222-A225. | [30] | Senguttuvan P,Rousse G,Seznec V,et al. Na2Ti3O7:Lowest Voltage ever Reported Oxide Insertion Electrode for Sodium Ion Batteries[J]. Chem Mater,2011,23(18):4109-4111. | [31] | Zhao L P,Qi L,Wang H Y.Sodium Titanate Nanotube/Graphite, An Electric Energy Storage Device Using Na-Based Organic Electrolytes[J]. J Power Sources,2013,242(6):597-603. | [32] | Jr E M,de Abreu M A S,Pravia O R C,et al. A Dtudy On the Structure and Thermal Stability of Titanate Nanotubes as a Function of Sodium Content[J]. Solid State Sci,2006,8(8):888-900. |
|