[1] CHEN X P, ZHANG F, GUO Y L. Validating an ion mobility spectrometry-quadrupole time of flight mass spectrometry method for high-throughput pesticide screening[J]. Analyst, 2019, 144: 4835-4840. [2] VARELA D A, GONZALEZ M A, GONZALEZ J, et al. High-throughput analysis of pesticides in minor tropical fruits from Colombia[J]. Food Chem, 2019, 280: 221-230. [3] OENNING A L, MERIB J, CARASEK E. An effective and high-throughput analytical methodology for pesticide screening in human urine by disposable pipette extraction and gas chromatography-mass spectrometry[J]. J Chromatogr B, 2018, 1092: 459-465. [4] LIU Z Z, QI P P, WANG X Y, et al. Multi-pesticides residue analysis of grains using modified magnetic nanoparticle adsorbent for facile and efficient cleanup[J]. Food Chem, 2017, 230: 423-431. [5] ZHANG M L, CHEN H P, ZHU L, et al. Solid-phase purification and extraction for the determination of trace neonicotinoid pesticides in tea infusion[J]. J Sep Sci, 2016, 39(5): 910-917. [6] WU C C. Multiresidue method for the determination of pesticides in Oolong tea using QuEChERS by gas chromatography-triple quadrupole tandem mass spectrometry[J]. Food Chem, 2017, 229: 580-587. [7] LIAN W L, REN F L, TANG L Y, et al. Analysis of polycyclic aromatic hydrocarbons in cigarette samples using gel permeation chromatography clean-up by gas chromatography-tandem mass spectrometry[J]. Microchem J, 2016, 129: 194-199. [8] MAHPISHANIAN S, SERESHTI H. Three-dimensional graphene aerogel-supported iron oxide nanoparticles as an efficient adsorbent for magnetic solid phase extraction of organophosphorus pesticide residues in fruit juices followed by gas chromatographic determination[J]. J Chromatogr A, 2016, 1443: 43-53. [9] KUSANO R, MATSUO Y, SAITO Y, et al. Oxidation mechanism of black tea pigment theaflavin by peroxidase[J]. Tetrahedron Lett, 2015, 56:5099-5102. [10] SHIRAI N. Gas chromatographic analysis of organic acids in Japanese green tea leaves[J]. J Oleo Sci, 2019, 68(12): 1271-1277. [11] BS EN 15662:2018. Foods of plant origin-multimethod for the determination of pesticide residues using GC-and LC-based analysis following acetonitrile extraction/partitioning and clean-up by dispersive SPE-modular QuEChERS-method[S]. European Standard. [12] KNOX J H, KAUR B, MILLWARD G R. Structure and performance of porous graphitic carbon in liquid chromatography[J]. J Chromatogr A, 1986, 352: 3-25. [13] 李媛, 肖乐辉, 周乃元, 等. 在茶叶农药残留测定中用四氧化三铁纳米粒子去除样品中的色素[J]. 分析化学, 2013, 41(1): 63-68. LI Y, XIAO L H, ZHOU N Y, et al. Purification of pigments by iron oxide nanoparticles for analysis of pesticide residues in tea[J]. Chinese J Anal Chem, 2013, 41(1): 63-68. [14] 李媛. Fe3O4纳米粒子对茶叶中植物色素的选择性吸附研究[D]. 长沙:湖南师范大学, 2013. LI Y. Study on the selectivity that Fe3O4 nano-particles adsorb plant pigment of tea[D]. Changsha: Hunan Normal University, 2013. [15] 宋淑玲, 李重九, 马晓东, 等. 蔬菜中残留农药的石墨化炭黑净化和气相色谱-质谱检测方法[J]. 分析化学, 2008, 36(11): 1526-1530. SONG S L, LI C J, MA X D, et al. Adsorption and purification of pesticides in vegetables with graphitized carbon black and determination with gas chromatography-mass spectrometry[J]. Chinese J Anal Chem, 2008, 36(11): 1526-1530. [16] ZHAO Q, LI G L, NING Y F, et al. Rapid magnetic solid-phase extraction based on magnetic graphitized carbon black for the determination of 1-naphthol and 2-naphthol in urine[J]. Microchem J, 2019, 147: 67-74. [17] LI Y F, QIAO L Q, LI F W, et al. Determination of multiple pesticides in fruits and vegetables using a modified quick, easy, cheap, effective, rugged and safe method with magnetic nanoparticles and gas chromatography tandem mass spectrometry[J]. J Chromatogr A , 2014, 1361(26): 77-87. [18] NODEH H R, IBRAHIM W A W, KAMBOH M A, et al. New magnetic graphene-based inorganic-organic sol-gel hybrid nanocomposite for simultaneous analysis of polar and non-polar organophosphorus pesticides from water samples using solid-phase extraction[J]. Chemosphere, 2017, 166: 21-30. [19] CAO S R, CHEN Y L, ZHANG L, et al. Designed multifunctional ionic liquids-magnetic graphene nanocomposites as the adsorbent of MSPE for the determination of preservatives[J]. Anal Methods, 2018, 10: 1420-1430. [20] ZHOU Y F, ZHAO M X, MENG Z, et al. A magnetic graphene-like MoS2 nanocomposite for simultaneous preconcentration of multi-residue herbicides prior to UHPLC with ion trap mass spectrometric detection[J]. Microchim Acta, 2019, 186: 486. [21] 吴日良, 刘云芳, 任森, 等. Fe3O4@碳/氧化石墨烯复合材料制备及燃料吸附性能[J]. 中国环境科学, 2016, 36(10): 2981-2987. WU R L, LIU Y F, REN S, et al. Preparation and dye adsorption properties of Fe3O4@carbon/GO composites[J]. China Environ Sci, 2016, 36(10): 2981-2987. [22] HAN Q, WANG Z H, XIA J F, et al. Facile and tunable fabrication of Fe3O4/graphene oxide nanocomposites and their application in the magnetic solid-phase extraction of polycyclic aromatic hydrocarbons from environmental water samples[J]. Talanta, 2012, 101: 388-395. [23] 孙世利, 杨军国, 张岚翠, 等. 儿茶素与金属离子相互作用及其生物学意义[J]. 细胞生物学杂志, 2007, 29: 225-228. SUN S L, YANG J G, ZHANG L C, et al. Interactions of catechins with metal ions and their biological significance[J]. Chinese J Cell Biol, 2007, 29: 225-228. [24] 李蓉, 卢俊文, 杨芳, 等. 基质固相分散萃取-气相色谱-串联质谱法同时测定蔬菜中195种农药残留[J]. 食品科学, 2014, 35(24): 301-307. LI R, LU J W, YANG F, et al. Simultaneous determination of 195 pesticide residues in vegetables using solid phase dispersive extraction-gas chromatography-tandem mass spectrometry[J]. Food Sci, 2014, 35(24): 301-307. [25] 郭冬冬, 杨芳, 李捷, 等. 气相色谱-四极杆/飞行时间质谱法快速筛查茶叶中350种农药残留[J]. 分析实验室, 2019, 38(10): 1177-1188. GUO D D, YANG F, LI J, et al. Rapid screening of 350 pesticide residues in tea by gas chromatography coupled with quadrupole time-of-flight mass spectrometry[J]. Chinese J Anal Lab, 2019, 38(10): 1177-1188. [26] HAKME E, LOZANO A, UCLES S, et al. High-throughput gas chromatography-mass spectrometry analysis of pesticide residues in spices by using the enhanced matrix removal-lipid and the sample dilution approach[J]. J Chromatogr A, 2018(1573): 28-41. [27] 张海超, 艾连峰, 马育松, 等. 在线净化液相色谱-高分辨质谱法快速筛查果蔬种212种农药残留[J]. 分析测试学报, 2018, 37(2): 180-189. ZHANG H C, AI L F, MA Y S, et al. Rapid screening of 212 pesticide residues in fruits and vegetables by liquid chromatography-high resolution mass spectrometry with on-line cleanup[J]. J Instrum Anal, 2018, 37(2): 180-189. |