Chinese Journal of Applied Chemistry ›› 2026, Vol. 43 ›› Issue (1): 31-40.DOI: 10.19894/j.issn.1000-0518.250292
• Full Papers • Previous Articles Next Articles
Fang-Fang LIU1, Hai-Bo YAO1, Guo-Min LI1, Li-Peng WANG2, Zhi-Xin DONG1(
), Xue-Peng QIU1(
)
Received:2025-07-22
Accepted:2025-10-30
Published:2026-01-01
Online:2026-01-26
Contact:
Zhi-Xin DONG,Xue-Peng QIU
About author:xp_q@ciac.ac.cnSupported by:CLC Number:
Fang-Fang LIU, Hai-Bo YAO, Guo-Min LI, Li-Peng WANG, Zhi-Xin DONG, Xue-Peng QIU. Preparation and Atomic Oxygen-Resistant Properties of Quaternary Ammonium Salt Modified Polyhedral Oligomeric Silsesquioxane/Polyimide Composite Fibers[J]. Chinese Journal of Applied Chemistry, 2026, 43(1): 31-40.
Add to citation manager EndNote|Ris|BibTeX
URL: http://yyhx.ciac.jl.cn/EN/10.19894/j.issn.1000-0518.250292
| Sample | w(QA-POSS)/% in PAA | Calculated w(silicon)/% | w(silicon)/% measured by XPS | w(silicon)/% measured by ICP |
|---|---|---|---|---|
| 1 | 2.5 | 0.50 | 1.75 | 0.65 |
| 2 | 5.0 | 1.00 | 2.35 | 0.71 |
| 3 | 7.5 | 1.50 | 2.92 | 1.23 |
| 4 | 10.0 | 2.00 | 3.18 | 1.69 |
| 5 | 15.0 | 3.00 | 5.99 | 2.73 |
Table 1 Theoretical and test results of silicon content in the composite fibers
| Sample | w(QA-POSS)/% in PAA | Calculated w(silicon)/% | w(silicon)/% measured by XPS | w(silicon)/% measured by ICP |
|---|---|---|---|---|
| 1 | 2.5 | 0.50 | 1.75 | 0.65 |
| 2 | 5.0 | 1.00 | 2.35 | 0.71 |
| 3 | 7.5 | 1.50 | 2.92 | 1.23 |
| 4 | 10.0 | 2.00 | 3.18 | 1.69 |
| 5 | 15.0 | 3.00 | 5.99 | 2.73 |
Fig.3 Cross-sectional morphology images of composite fibers with QA-POSS additions of 2.5% (A1, A2), 5% (B1, B2), and 10% (C1, C2). Quantitative analysis of Si element content in the central regions (A1, B1, C1) and edge regions (A2, B2, C2) of the fibers
Fig.6 Surface morphologies of (A0-A3) blank PI fiber, composite fibers with (B0-B3) 2.5% QA-POSS, (C0-C3) 5% QA-POSS, (D0-D3) 7.5% QA-POSS, (E0-E3) 10% QA-POSS, and (F0-F3) 15% QA-POSS additive amount before and after AO erosion
| Element type | Surface elemental mass fraction by XPS/% | |||
|---|---|---|---|---|
| Composite fibers with 5% QA-POSS additive amount | Composite fibers with 15% QA-POSS additive amount | |||
| Before AO exposure | After AO exposure | Before AO exposure | After AO exposure | |
| C | 77.68 | 39.04 | 75.27 | 20.37 |
| O | 15.93 | 38.62 | 15.64 | 50.71 |
| Si | 2.35 | 20.57 | 5.99 | 27.82 |
Table 3 Surface elemental content of the composite fibers before and after exposure to AO
| Element type | Surface elemental mass fraction by XPS/% | |||
|---|---|---|---|---|
| Composite fibers with 5% QA-POSS additive amount | Composite fibers with 15% QA-POSS additive amount | |||
| Before AO exposure | After AO exposure | Before AO exposure | After AO exposure | |
| C | 77.68 | 39.04 | 75.27 | 20.37 |
| O | 15.93 | 38.62 | 15.64 | 50.71 |
| Si | 2.35 | 20.57 | 5.99 | 27.82 |
| [1] | 丁孟贤. 聚酰亚胺-化学、结构与性能的关系及材料[M]. 北京: 科学出版社, 2006. |
| DING M X. Polyimide-relationship of chemistry, structure and properties, and materials[M]. Beijing: Science Press, 2006. | |
| [2] | BAO F, DONG Z X, ZHANG R, et al. Preparation and properties of high-performance polyimide copolymer fibers containing rigid pyrimidine and benzoxazole moieties with hydrogen bonding[J]. J Mater Res Technol, 2021, 12: 1143-1156. |
| [3] | BAO F, ZHANG R, DONG Z X, et al. Comparison of high-performance polyimide copolymer fibers containing pyrimidine moieties based on coplanar structures[J]. Polymer, 2021, 231: 124113-124122. |
| [4] | ZHAO Y, DONG Z X, LI G M, et al. Atomic oxygen resistance of polyimide fibers with phosphorus-containing side chains[J]. RSC Adv, 2017, 7(9): 5437-5444. |
| [5] | DONG H, DONG, LI X T, et al. Preparation of high-temperature resistant polyimide fibers by introducing the p-phenylenediamine into kapton-type polyimide[J]. ACS Appl Polym Mater, 2024, 6: 2371-2380. |
| [6] | LIAW D J, WANG K L, HUANG Y C, et al. Advanced polyimide materials: syntheses, physical properties and applications[J]. Prog Polym Sci, 2012, 37(7): 907-974. |
| [7] | DING M X. Isomeric polyimides[J]. Prog Polym Sci, 2007, 32(6): 623-668. |
| [8] | SON G, KIM C G. Protective effect of nanocomposite film from the low earth orbit environment[J]. J Compos Mater, 2015, 49(19): 2297-2306. |
| [9] | SERFONTEIN Z, KINGSTON J, HOBBS S, et al. Effects of long-term exposure to the low-earth orbit environment on drag augmentation systems[J]. Acta Astronaut, 2022, 195: 540-546. |
| [10] | BANKS B A, SNYDER A, MILLER S K, et al. Atomic-oxygen undercutting of protected polymers in low earth orbit[J]. J Spacecraft Rockets, 2004, 41(3): 335-339. |
| [11] | HUANG T T, GU Y H, ZHANG Y Z, et al. Reactive molecular dynamics simulation on the disintegration of kapton-POSS composites during atomic oxygen impact [J]. J Phys Chem C, 2025, 129: 3626-3634. |
| [12] | SERENKO O A, ANDROPOVA U S, AYSIN R R, et al. Stabilization mechanisms of polyimide-metallosiloxane nanocomposites against atomic oxygen impact[J]. Appl Surf Sci, 2025, 685: 161992-162002. |
| [13] | ANDROPOVA U S, CHERNIK V N, NOVIKOV L S, et al. Effect of nanoparticles and siloxane groups on the atomic oxygen erosion resistance of copolyimides[J]. Polym Degrad Stabil, 2024, 221: 110659-110668. |
| [14] | MINTON T K, SCHWARTZENTRUBER T E, XU C B. On the utility of coated POSS-polyimides for vehicles in very low earth orbit[J]. ACS Appl Polym Mater, 2021, 13: 51673-51684. |
| [15] | DEVAPAL D, PACKIRISAMY S, KORULLA R M, et al. Atomic oxygen resistant coating from poly(tetramethyldisilylene-co-styrene)[J]. J Appl Polym Sci, 2004, 94(6): 2368-2375. |
| [16] | HU L F, LI M S, XU C H, et al. A polysilazane coating protecting polyimide from atomic oxygen and vacuum ultraviolet radiation erosion[J]. Surf Coat Technol, 2009, 203(22): 3338-3343. |
| [17] | GOUZMAN I, GROSSMAN E, LEMPERT G, et al. Atomic oxygen durability of uncoated and coated high-frequency circuit materials[J]. High Perform Polym, 2001, 13(3): S505-S516. |
| [18] | QIAN M, ZHANG Y, MAO X J, et al. Flexible photoelectronic material device and investigation method for space applications[J]. Prog Aerosp Sci, 2023, 139: 100901. |
| [19] | MINTON T K, WU B H, ZHANG J M, et al. Protecting polymers in space with atomic layer deposition coatings[J]. ACS Appl Mater Interfaces, 2010, 2(9): 2515-2520. |
| [20] | COOPER R, UPADHYAYA H P, MINTON T K, et al. Protection of polymer from atomic-oxygen erosion using Al2O3 atomic layer deposition coatings[J]. Thin Solid Films, 2008, 516(12): 4036-4039. |
| [21] | YAN C, LI J L, WANG H B, et al. Growth and atomic oxygen erosion resistance of Al2O3-doped TiO2 thin film formed on polyimide by atomic layer deposition[J]. RSC Adv, 2024, 14(47): 34833-34842. |
| [22] | MINTON T K, WRIGHT M E, TOMCZAK S J, et al. Atomic oxygen effects on POSS polyimides in low earth orbit[J]. ACS Appl Mater Interfaces, 2012, 4: 492-502. |
| [23] | QIAN M, MURRAY V J, WEI W, et al. Resistance of POSS polyimide blends to hyperthermal atomic oxygen attack[J]. ACS Appl Polym Mater, 2016, 8: 33982-33992. |
| [24] | LIU F F, GUO H Q, ZHAO Y, et al. Enhanced resistance to the atomic oxygen exposure of POSS/polyimide composite fibers with surface enrichment through wet spinning[J]. Eur Polym J, 2018, 105: 115-125. |
| [25] | FEHER F J, WYNDHAM K D, SOULIVONG D, et al. Syntheses of highly functionalized cube-octameric polyhedral oligosilsesquioxanes (R8Si8O12)[J]. J Chem Soc Dalton, 1999, 9: 1491-1497. |
| [26] | FEHER F, BUDZICHOWSKI T A. Syntheses of highly-functionalized polyhedral oligosilsesquioxanes[J]. J Organomet Chem, 1989, 379(1/2): 33-40. |
| [27] | FISCHER H R, TEMPELAARS K, KERPERSHOEK A, et al. Development of flexible LEO-resistant PI films for space applications using a self-healing mechanism by surface-directed phase separation of block copolymers[J]. ACS Appl Polym Mater, 2010, 2(8): 2218-2225. |
| [28] | MIYAZAKI E, TAGAWA M, YOKOTA K, et al. Investigation into tolerance of polysiloxane-block-polyimide film against atomic oxygen[J]. Acta Astronaut, 2010, 66(5/6): 922-928. |
| [29] | SHIMAMURA H, NAKAMURA T. Mechanical properties degradation of polyimide films irradiated by atomic oxygen[J]. Polym Degrad Stabil, 2009, 94(9): 1389-1396. |
| [1] | Yu-Xin GAO, Rui LI, Ming-Yue YAN, Yan-Xiong PAN, Li-Juan WANG, Qi YANG, Xiang-Ling JI, Wei LIU. Fractionation and Chain Microstructure of Polypropylene Homopolymer for Spinning [J]. Chinese Journal of Applied Chemistry, 2026, 43(1): 77-86. |
| [2] | Jian ZHANG, Yi-Xin ZHANG, Lei CUI, Zhong-Bao JIAN. Thermosetting Cyclic Olefin Terpolymers with High Optical Transparency and High Heat-Resistance via Thermo-Induced Benzocyclobutene Cross-Linking [J]. Chinese Journal of Applied Chemistry, 2025, 42(12): 1619-1628. |
| [3] | Shu-Ming DAI, Jia-Yue LI, Yu CHENG, Kun-Yu ZHANG, Zhe MA, Zi-He ZHAO, Bin WANG. Preparation and Properties of Poly(L-lactide-p-dioxocyclohexanone) [J]. Chinese Journal of Applied Chemistry, 2025, 42(12): 1629-1635. |
| [4] | Chuan-Yu GUO, Li-Yu SUN, Xing-Hua GUAN, Qiang SHI. Heparin/Barium Titanate-Loaded PVDF Electrospun Membranes: Fabrication, Anticoagulant, and Antibacterial Performance [J]. Chinese Journal of Applied Chemistry, 2025, 42(12): 1636-1648. |
| [5] | Yi-Huai ZHANG, Tao LIAO, Yong-Feng MEN. In-situ Wide-Angle X-ray Diffraction Characterization of Microstructural Evolution of Metallocene Polyethylene Film During Stress Relaxation and Fatigue Process [J]. Chinese Journal of Applied Chemistry, 2025, 42(12): 1661-1670. |
| [6] | Qing-Hua SHANG, Meng-Yuan ZHANG, Hao-Tian ZHENG, Zheng ZHAO, Jiang-Tao LI, Yi-Long CHENG. Antibacterial Polymer Hydrogel Based on Cold Plasma-Activated Water for Infected Wound Regeneration [J]. Chinese Journal of Applied Chemistry, 2025, 42(11): 1461-1471. |
| [7] | Wang-Yao JI, Xiao-Xia JIAN, Pei-Yao HAN, Xiang ZHANG. Preparation and Properties of Poly(3,4-ethylenedioxythiophene)- Poly(styrenesulfonate)/Polyvinyl Alcohol Semi-Interpenetrating Polymer Network [J]. Chinese Journal of Applied Chemistry, 2025, 42(11): 1479-1490. |
| [8] | Yu LI, Jiao MU, Du-Jin WANG, Guo-Ming LIU. Probing the Glass Transition Temperature of Poly(vinyl butyral) Using Fluorescence Lifetime [J]. Chinese Journal of Applied Chemistry, 2025, 42(10): 1323-1334. |
| [9] | Long ZHOU, Yu-Jing TANG, Yi-Jing JIA, Xiao-Min LI, Ying-Nan DENG, Si-Jia WEI. Isothermal Crystallization Kinetics of Ethylene Vinyl Alcohol Copolymer [J]. Chinese Journal of Applied Chemistry, 2025, 42(9): 1221-1232. |
| [10] | Xiao YANG, De-Wen SUN. Effect from Miktoarm Star-Like Chain Architectures on Nonequilibrium Self-Assembly of Block Copolymers [J]. Chinese Journal of Applied Chemistry, 2025, 42(8): 1087-1095. |
| [11] | Peng WANG, Jia-Lin GUO, Ying ZHANG, Chang-Yan SU. Strength Simulation Analysis of Lightmass Aviation Tire Carcass Based on Finite Element Simulation [J]. Chinese Journal of Applied Chemistry, 2025, 42(7): 955-961. |
| [12] | Xiao-Long LAI, Zhi-Yun ZOU, Feng-Xiang XIE, Wen-E LI. Analysis of the Influence of Polypropylene Fiber on the Performance of Modified Asphalt Concrete [J]. Chinese Journal of Applied Chemistry, 2025, 42(7): 962-970. |
| [13] | Qing-Wen JIANG, Ying ZHANG, Hai-Tong LI, Xiao-Jun HAN. Research Progress of Composite Coagulants in Treatments of Low Temperature and Low Turbidity Water [J]. Chinese Journal of Applied Chemistry, 2025, 42(5): 656-667. |
| [14] | Tian-Yi ZHOU, Xiao-Hu ZHANG, Guang-Li HU, San-Rong LIU, Ji-Fu BI. The Relationships Between Different Parameters of Visco-Elastic Testing for Nano-Composites of Butadiene-Isoprene Copolymers [J]. Chinese Journal of Applied Chemistry, 2025, 42(5): 684-692. |
| [15] | Yu-Xin GAO, Wei LIU, Rui LI, Yan-Xiong PAN, Deng-Fei WANG, Ming-Jun ZHANG, Shu-Yan HE, Xiang-Ling JI. Comparison of Chain Microstructure of Four Polyethylene Resins for Films and Pipes [J]. Chinese Journal of Applied Chemistry, 2025, 42(4): 490-498. |
| Viewed | ||||||
|
Full text |
|
|||||
|
Abstract |
|
|||||