Chinese Journal of Applied Chemistry ›› 2025, Vol. 42 ›› Issue (5): 656-667.DOI: 10.19894/j.issn.1000-0518.240390
• Review • Previous Articles Next Articles
					
													Qing-Wen JIANG1,2, Ying ZHANG2,3(
), Hai-Tong LI4, Xiao-Jun HAN2(
)
												  
						
						
						
					
				
Received:2024-12-02
															
							
															
							
																	Accepted:2025-03-06
															
							
																	Published:2025-05-01
															
							
																	Online:2025-06-05
															
						Contact:
								Ying ZHANG,Xiao-Jun HAN   
													About author:13895789040@163.comSupported by:CLC Number:
Qing-Wen JIANG, Ying ZHANG, Hai-Tong LI, Xiao-Jun HAN. Research Progress of Composite Coagulants in Treatments of Low Temperature and Low Turbidity Water[J]. Chinese Journal of Applied Chemistry, 2025, 42(5): 656-667.
																													Fig.2 Experimental data of the treatment of low temperature and low turbidity water by inorganic-inorganic composite coagulants. (A) The variation of residual turbidity and pH value for different dosages of FeCl3 and FeCl3/PAFC compound coagulant; (B) Residual Fe and Al concentration and UV254 with different coagulations[24]; (C) The turbidity removal ability of PAC, AS composited with PT with the total dose of 2.5 mg/L of Al2O3 and Ti[31]; (D) The turbidity removal ability of PAC, AS composited with PT with the total dose of 4.0 mg/L of Al2O3 and Ti[31]
| Coagulant | Water source | Raw water parameters | Experimental conditions | Removal rate | Effluent parameter | Ref. | 
|---|---|---|---|---|---|---|
| PAFC | Songhua River | Temperature=4.5 ℃ pH=7.7 Turbidity=6.71 NTU  | ρ(PAFC)=10 mg/L | Turbidity=84.6% | Turbidity=1 NTU | [ | 
| PAFC/FeCl3 | Luanhe River | Temperature: 0~9.8 ℃ 8.02<pH<8.59 Turbidity=7.9 NTU COD: 2.9~3.6 mg/L UV254=0.1339 cm-1  | ρ(PAFC+FeCl3)=20 mg/L m(PAFC)∶m(FeCl3)=3∶1  | Turbidity=94% CODMn=43% UV254=84%  | Turbidity=0.47 NTU CODMn=2 mg/L UV254=0.021 cm-1ρ(residual aluminum)=0.9 mg/L ρ(residual iron)=0.01 mg/L  | [ | 
| PTFC | Xueshan Water Plant in Licheng District+humic acid 10 mg/L | Temperature<10 ℃ 6.8<pH<7.5 Turbidity: 6.0~6.5 NTU ρ(DOC)=5.0~5.8 mg/L  | n(Ti)∶n(Fe)=1∶1 Basicity 0.75 pH=7、8 c(PTFC)=0.3 mmol/L  | Turbidity=92.3% DOC about 60%  | Turbidity=0.5 NTU DOC<2.32  | [ | 
| PATS | Simulate low temperature and low turbidity water | Temperature: 20~23 ℃ pH=7.65 Turbidity=(19±0.5) NTU ρ(aluminum)=0.053 mg/L  | n(Al)∶n(Ti)=10∶1 n(Al+Ti)∶n(Si)=1∶2 c(PATS)=0.10 mmol/L  | - | Turbidity 0.39 NTU ρ(residual aluminum)=0.037 mg/L  | [ | 
| PAC/PT | The water of Yangshan Lake in Qixia District, Nanjing City during winter | Temperature=(9±1) ℃ pH=7.5±1 Turbidity=(20±3) NTU UV254=(0.1±0.02) cm-1  | n(Al2O3)∶n(Ti)=3∶2 ρ(PAC+PT)=4 mg/L  | - | Turbidity≈1.2 NTU | [ | 
| AS/PT | The water of Yangshan Lake in Qixia District, Nanjing City during winter | Temperature=(9±1) ℃ pH=7.5±1 Turbidity=(20±3) NTU UV254=(0.1±0.02) cm-1  | n(Al2O3)∶n(Ti)=3∶2 ρ(AS+PT)=4 mg/L  | - | Turbidity<1 NTU | [ | 
| PSAS | - | Temperature=2 ℃ pH=5.4 Turbidity=30 NTU  | n(Al)∶n(Si)=3∶1 ρ(PSAS)=15 mg/L  | Turbidity=95.64% | Turbidity 1.31 NTU | [ | 
Table 1 Applications of inorganic-inorganic compound coagulants in low temperature and low turbidity water treatment
| Coagulant | Water source | Raw water parameters | Experimental conditions | Removal rate | Effluent parameter | Ref. | 
|---|---|---|---|---|---|---|
| PAFC | Songhua River | Temperature=4.5 ℃ pH=7.7 Turbidity=6.71 NTU  | ρ(PAFC)=10 mg/L | Turbidity=84.6% | Turbidity=1 NTU | [ | 
| PAFC/FeCl3 | Luanhe River | Temperature: 0~9.8 ℃ 8.02<pH<8.59 Turbidity=7.9 NTU COD: 2.9~3.6 mg/L UV254=0.1339 cm-1  | ρ(PAFC+FeCl3)=20 mg/L m(PAFC)∶m(FeCl3)=3∶1  | Turbidity=94% CODMn=43% UV254=84%  | Turbidity=0.47 NTU CODMn=2 mg/L UV254=0.021 cm-1ρ(residual aluminum)=0.9 mg/L ρ(residual iron)=0.01 mg/L  | [ | 
| PTFC | Xueshan Water Plant in Licheng District+humic acid 10 mg/L | Temperature<10 ℃ 6.8<pH<7.5 Turbidity: 6.0~6.5 NTU ρ(DOC)=5.0~5.8 mg/L  | n(Ti)∶n(Fe)=1∶1 Basicity 0.75 pH=7、8 c(PTFC)=0.3 mmol/L  | Turbidity=92.3% DOC about 60%  | Turbidity=0.5 NTU DOC<2.32  | [ | 
| PATS | Simulate low temperature and low turbidity water | Temperature: 20~23 ℃ pH=7.65 Turbidity=(19±0.5) NTU ρ(aluminum)=0.053 mg/L  | n(Al)∶n(Ti)=10∶1 n(Al+Ti)∶n(Si)=1∶2 c(PATS)=0.10 mmol/L  | - | Turbidity 0.39 NTU ρ(residual aluminum)=0.037 mg/L  | [ | 
| PAC/PT | The water of Yangshan Lake in Qixia District, Nanjing City during winter | Temperature=(9±1) ℃ pH=7.5±1 Turbidity=(20±3) NTU UV254=(0.1±0.02) cm-1  | n(Al2O3)∶n(Ti)=3∶2 ρ(PAC+PT)=4 mg/L  | - | Turbidity≈1.2 NTU | [ | 
| AS/PT | The water of Yangshan Lake in Qixia District, Nanjing City during winter | Temperature=(9±1) ℃ pH=7.5±1 Turbidity=(20±3) NTU UV254=(0.1±0.02) cm-1  | n(Al2O3)∶n(Ti)=3∶2 ρ(AS+PT)=4 mg/L  | - | Turbidity<1 NTU | [ | 
| PSAS | - | Temperature=2 ℃ pH=5.4 Turbidity=30 NTU  | n(Al)∶n(Si)=3∶1 ρ(PSAS)=15 mg/L  | Turbidity=95.64% | Turbidity 1.31 NTU | [ | 
																													Fig.3 Coagulation efficiency of PDMDAAC and PATC. (A) Effects of PDMDAAC and PATC composite ratio on removal efficiency of turbidity, TOC and UV254[51]; (B) Effects of PDMDAAC and PATC composite dosage on removal efficiency of turbidity, TOC and UV254[51]
| Coagulant | Water source | Raw water parameters | Experimental conditions | Removal rate | Effluent parameter | Ref. | 
|---|---|---|---|---|---|---|
| PAC/PAM | Huanghe River | Temperature=4.8 ℃ pH=8.05 Turbidity=14.8 NTU  | 10% PAC(effective content 32%, relative molecular mass is 1 000) 0.1% PAM(effective content 91%, relative molecular mass is less than 15 million) Variable porosity filter  | Turbidity=99.46% | Turbidity=0.08 NTU | [ | 
| PAC/Sodium Alginate +PAM+ Hydroxypropyl methylcellulose | - | Temperature: 0~2 ℃ Turbidity: 20~30 NTU  | ρ(PAC)=102 mg/L ρ(PAM)=4.5 mg/L ρ(sodium alginate)=2 mg/L ρ(hydroxypropyl methylcellulose)=2 mg/L  | - | Turbidity=0.6 NTU | [ | 
| PFAC/PAM | - | Temperature=(5.01±0.24) ℃ Turbidity=(8.15±0.19) NTU ρ(ammonia nitrogen)=(0.80±0.02) mg/L  | V(PFAC)=7.87 mg/L V(PAM)=6.06 mg/L Sand filter  | Turbidity=16.3% Ammonia nitrogen=14.7%  | Turbidity=0.76 NTU CODMn=2.72 mg/L ρ(ammonia nitrogen)=0.44 mg/L  | [ | 
| FeCl3/PAM | - | Temperature=18 ℃ 6.5<pH<7 Turbidity=2.72 NTU  | pH=8.0 ρ(FeCl3): 3.2~3.8 mg/L ρ(PAM)=0.2 mg/L  | Turbidity=87.1% | Turbidity=0.35 NTU | [ | 
| PAC+PDMDAAC | Taihu Lake Lake water in winter | Temperature: 2~5 ℃ Turbidity: 9~20 NTU  | Intrinsic viscosity: 1.53~3.32 Mass fraction: 10%~20%  | - | Turbidity<1 NTU | [ | 
| PFM+PDMDAAC | Winter raw water from a water plant in Nanchang City | Temperature: 7~9 ℃ 7.12<pH<7.35 Turbidity 17.4~21.5 NTU DOC: 2.56~2.84 mg/L  | PD/FM≥0.20 ρ(PFM+PDMDAAC)=3 mg/L  | Turbidity>95% DOC>55%  | Turbidity<0.87 NTU DOC<1.15 mg/L  | [ | 
| PATC+PDMDAAC | Xiangjiang River | Temperature=(7.5±0.3) ℃ pH=7.24±0.2 Turbidity=(17±0.5) NTU TOC=7.23 mg/L  | The ratio of organic-inorganic is 0.15 ρ(PATC+PDMDAAC)=3.6 mg/L  | TOC=62.18% | Residual turbidity=0.56 NTU TOC=2.734 mg/L  | [ | 
Table 2 Applications of inorganic-synthetic organic compound coagulants in low temperature and low turbidity water treatment
| Coagulant | Water source | Raw water parameters | Experimental conditions | Removal rate | Effluent parameter | Ref. | 
|---|---|---|---|---|---|---|
| PAC/PAM | Huanghe River | Temperature=4.8 ℃ pH=8.05 Turbidity=14.8 NTU  | 10% PAC(effective content 32%, relative molecular mass is 1 000) 0.1% PAM(effective content 91%, relative molecular mass is less than 15 million) Variable porosity filter  | Turbidity=99.46% | Turbidity=0.08 NTU | [ | 
| PAC/Sodium Alginate +PAM+ Hydroxypropyl methylcellulose | - | Temperature: 0~2 ℃ Turbidity: 20~30 NTU  | ρ(PAC)=102 mg/L ρ(PAM)=4.5 mg/L ρ(sodium alginate)=2 mg/L ρ(hydroxypropyl methylcellulose)=2 mg/L  | - | Turbidity=0.6 NTU | [ | 
| PFAC/PAM | - | Temperature=(5.01±0.24) ℃ Turbidity=(8.15±0.19) NTU ρ(ammonia nitrogen)=(0.80±0.02) mg/L  | V(PFAC)=7.87 mg/L V(PAM)=6.06 mg/L Sand filter  | Turbidity=16.3% Ammonia nitrogen=14.7%  | Turbidity=0.76 NTU CODMn=2.72 mg/L ρ(ammonia nitrogen)=0.44 mg/L  | [ | 
| FeCl3/PAM | - | Temperature=18 ℃ 6.5<pH<7 Turbidity=2.72 NTU  | pH=8.0 ρ(FeCl3): 3.2~3.8 mg/L ρ(PAM)=0.2 mg/L  | Turbidity=87.1% | Turbidity=0.35 NTU | [ | 
| PAC+PDMDAAC | Taihu Lake Lake water in winter | Temperature: 2~5 ℃ Turbidity: 9~20 NTU  | Intrinsic viscosity: 1.53~3.32 Mass fraction: 10%~20%  | - | Turbidity<1 NTU | [ | 
| PFM+PDMDAAC | Winter raw water from a water plant in Nanchang City | Temperature: 7~9 ℃ 7.12<pH<7.35 Turbidity 17.4~21.5 NTU DOC: 2.56~2.84 mg/L  | PD/FM≥0.20 ρ(PFM+PDMDAAC)=3 mg/L  | Turbidity>95% DOC>55%  | Turbidity<0.87 NTU DOC<1.15 mg/L  | [ | 
| PATC+PDMDAAC | Xiangjiang River | Temperature=(7.5±0.3) ℃ pH=7.24±0.2 Turbidity=(17±0.5) NTU TOC=7.23 mg/L  | The ratio of organic-inorganic is 0.15 ρ(PATC+PDMDAAC)=3.6 mg/L  | TOC=62.18% | Residual turbidity=0.56 NTU TOC=2.734 mg/L  | [ | 
																													Fig.4 Coagulation efficiency of PAC and chitosan (CTS). (A) Effects of viscosity of chitosan and type of acid solvent on the removal efficiencies of turbidity; (B) Effects of viscosity of chitosan and type of acid solvent on the removal efficiencies of UV254[60]
| 1 | DING Y N, WEI F, DONG C C, et al. UiO-66 based electrochemical sensor for simultaneous detection of Cd(Ⅱ) and Pb(Ⅱ)[J]. Inorg Chem Commun, 2021(131): 108785. | 
| 2 | ZHANG Y X, LI C, SU Y C, et al. Simultaneous detection of trace Cd(Ⅱ) and Pb(Ⅱ) by differential pulse anodic stripping voltammetry using a bismuth oxycarbide/nafion electrode[J]. Inorg Chem Commun, 2020, 111: 107672. | 
| 3 | LIU D R, PAN X Y, MU W, et al. Detection of tetracycline in water using glutathione-protected fluorescent gold nanoclusters[J]. Anal Sci, 2019, 35(4): 367-370. | 
| 4 | PAWAN K, AMRITA G, AMILAN J D. Chemical sensors for water detection in organic solvents and their applications[J]. ChemistrySelect, 2021, 6(4): 820-842. | 
| 5 | SOLANKI Y S, AGARWAL M, GUPTA A, et al. Fluoride occurrences, health problems, detection, and remediation methods for drinking water: a comprehensive review[J]. Sci Total Environ, 2022, 807: 150601. | 
| 6 | LU Q, DONG C C, WEI F, et al. Rational fabrication of Bi2WO6 decorated TiO2 nanotube arrays for photocatalytic degradation of organic pollutants[J]. Mater Res Bull, 2022, 145: 111563. | 
| 7 | 贺全宝, 胡征, 葛明. BiOX(X=Cl, Br, I)复合光催化材料降解水体中抗生素研究进展[J]. 应用化学, 2021, 38(7): 754-766. | 
| HE Q B, HU Z, GE M. Research progress on photo-degradation of antibiotics in water by BiOX(X =Cl,Br,I) composite photocatalytic materials[J]. Chin J Appl Chem, 2021, 38(7): 754-766. | |
| 8 | LIN Z S, DONG C C, MU W, et al. Degradation of rhodamine B in the photocatalytic reactor containing TiO2 nanotube arrays coupled with nanobubbles[J]. Adv Sens Energy Mater, 2023, 2(2): 100054. | 
| 9 | MA S H, ZONG W, HAN X J. Magnetic-responsive pickering emulsion and its catalytic application at the water-oil interface[J]. New J Chem, 2021, 45(8): 3974-3980. | 
| 10 | ZHAO X L, LI J D, CUI X Y, et al. Construction of novel 3D ZnO hierarchical structure with Fe3O4 assist and its enhanced visible light photocatalytic performance[J]. J Environ Chem Eng, 2020, 8(2): 103548. | 
| 11 | 于航, 王茜子, 朱绪娅, 等. 金属有机骨架材料MIL-101及其改性材料去除环境污染物的研究进展[J]. 应用化学, 2019, 36(11): 1221-1236. | 
| YU H, WANG X Z, ZHU X Y, et al. Research progress on metal organic framework material(MIL-101) and its functionalized modification materials for environmental pollutant removal[J]. Chin J Appl Chem, 2019, 36(11): 1221-1236. | |
| 12 | WEI F, XING H D, XIU Z Y, et al. Z-scheme TiO2-Au@CN heterojunction for simultaneous water purification of disinfection and organic pollutant removal by simulated solar light[J]. Mater Res Bull, 2023, 168: 112450. | 
| 13 | 姬李雪, 胥京京. 低温低浊水处理技术探析[J]. 辽宁化工, 2012, 41(8): 771-772, 781. | 
| JI L X, XU J J. Analysis of the treatment technology for low temperature and low turbidity water[J]. Liaoning Chem Ind, 2012, 41(8): 771-772, 781. | |
| 14 | EL-TAWEEL R M, MOHAMED N, ALREFAEY K A, et al. A review of coagulation explaining its definition, mechanism, coagulant types, and optimization models; RSM, and ANN[J]. Curr Res Green Sustainable Chem, 2023, 6: 100358. | 
| 15 | ABUJAZAR M S S, KARAAĞAÇ S U, AMR S S A, et al. Recent advancement in the application of hybrid coagulants in coagulation-flocculation of wastewater: a review[J]. J Cleaner Prod, 2022, 345: 131133. | 
| 16 | NCIBI M C, MAHJOUB B, MAHJOUB O, et al. Remediation of emerging pollutants in contaminated wastewater and aquatic environments: biomass-based technologies[J]. Clean-Soil Air Water, 2017, 45(5): 1700101. | 
| 17 | ZHANG X J, GRAHAM N, XU L, et al. The influence of small organic molecules on coagulation from the perspective of hydrolysis competition and crystallization[J]. Environ Sci Technol, 2021, 55(11): 7456-7465. | 
| 18 | ALISAWI H A O. Performance of wastewater treatment during variable temperature[J]. Appl Water Sci, 2020, 10(4): 89. | 
| 19 | DAVIS C C, EDWARDS M. Coagulation with hydrolyzing metal salts: mechanisms and water quality impacts[J]. Crit Rev Environ Sci Technol, 2014, 44(4): 303-347. | 
| 20 | 高广辉. 聚硅酸铝铁/阳离子淀粉复合絮凝剂的制备及其处理性能研究[D]. 兰州: 兰州交通大学, 2022. | 
| GAO G H. Preparation of polyaluminum ferric silicate/cationic starch composite flocculant and its treatment performance[D]. Lanzhou: Lanzhou Jiaotong University, 2022. | |
| 21 | 王东升, 李文涛, 杨晓芳, 等. 高铁酸盐:一种绿色的多功能水处理剂[J]. 应用化学, 2016, 33(11): 1221-1233. | 
| WANG D S, LI W T, YANG X F, et al. Ferrates: green oxidants and coagulants in water treatment[J]. Chin J Appl Chem, 2016, 33(11): 1221-1233. | |
| 22 | KONG D S, ZHOU Z H, SONG S J, et al. Preparation of poly aluminum-ferric chloride (PAFC) coagulant by extracting aluminum and iron ions from high iron content coal gangue[J]. Materials, 2022, 15(6): 2253. | 
| 23 | 张立东, 李彦文. 不同混凝剂处理低温低浊水的对比应用研究[J]. 吉林化工学院学报, 2014, 31(9): 67-69. | 
| ZHANG L D, LI Y W. Application of different coagulants low contrast and low turbidity water treatment[J]. J Jilin Inst Chem Technol, 2014, 31(9): 67-69. | |
| 24 | LOU I, GONG S Y, HUANG X J, et al. Coagulation optimization for low temperature and low turbidity source water using combined coagulants: a case study[J]. Desalin Water Treat, 2012, 46(1/2/3): 107-114. | 
| 25 | GAN Y H, LI J B, ZHANG L, et al. Potential of titanium coagulants for water and wastewater treatment: current status and future perspectives[J]. Chem Eng J, 2021, 406: 126837. | 
| 26 | ZHAO Y X, GAO B Y, SHON H K, et al. Coagulation characteristics of titanium (Ti) salt coagulant compared with aluminum (Al) and iron (Fe) salts[J]. J Hazard Mater, 2011, 185(2/3): 1536-1542. | 
| 27 | LIU J W, FU T, SUN G D, et al. A versatile organic silicate aluminum hybrid coagulant for broad-spectrum removal of heavy metal ions[J]. Chem Eng J, 2023, 472: 145005. | 
| 28 | ZHUANG J Y, QI Y H, YANG H Z, et al. Preparation of polyaluminum zirconium silicate coagulant and its performance in water treatment[J]. J Water Process Eng, 2021, 41: 102023. | 
| 29 | 岳浩伟, 王珊, 单志超, 等. 钛铁复合药剂强化混凝处理低温低浊水试验研究[J]. 净水技术, 2022, 41(9): 50-58. | 
| YUE H W, WANG S, SHAN Z C, et al. Experimental study on enhanced coagulation for low temperature and low turbidity water treatment with ferrotitanium compound reagent[J]. Water Purif Technol, 2022, 41(9): 50-58. | |
| 30 | 常鼎伟, 任壮, 武文洁. PATS的制备表征及其处理低浊水效能与残留铝控制[J]. 环境工程学报, 2017, 11(8): 4615-4620. | 
| CHANG D W, REN Z, WU W J. Preparation and characterization of PATS and its effect of coagulation and control of residual aluminum on low-turbidity water treatment[J]. Chin J Environ Eng, 2017, 11(8): 4615-4620. | |
| 31 | 厉豪杰. 聚钛混凝剂的量产工艺优化及其在低温低浊水中的应用评估[D]. 南京: 南京大学, 2021. | 
| LI H J. Optimization of mass production process of polymerized titanium coagulant and its application evaluation in low temperature and low turbidity water[D]. Nanjing: Nanjing University, 2021. | |
| 32 | 王帅. 聚硅酸硫酸铝处理低温低浊水分析[J]. 科技创新与应用, 2020(4): 108-109. | 
| WANG S. Analysis of low temperature and turbidity water treated by polysilicate aluminum sulfate[J]. Technol Innovation Appl, 2020(4): 108-109. | |
| 33 | TIAN Y S, LI Q, XU G Z, et al. Mechanistic investigation of an inorganic-organic hybrid coagulant with Fe3O4 magnetic loading-enhanced flocculation for water treatment[J]. J Cleaner Prod, 2024, 444: 141214. | 
| 34 | YU H L, ZHANG H L, SUN C L, et al. Preparation of inorganic-organic composite coagulant and its mechanism in destroying emulsified oil in oilfield sewage[J]. Sep Purif Technol, 2024, 330: 125446. | 
| 35 | LICHTFOUSE E, MUTHU S S, KHADIR A. Inorganic-organic composites for water and wastewater treatment[M]. Berlin: Springer, 2022. | 
| 36 | 商高锋, 赵晓蕾, 张跃军. PAC/PDM复合混凝剂对模拟印染废水混凝脱色效果研究[J]. 当代化工研究, 2024(11): 62-65. | 
| SHANG G F, ZHAO X L, ZHANG Y J. Study on the coagulation decolorization effect of the simulated dyeing wastewater treated by PAC/PDM composite coagulant[J]. Modern Chem Res, 2024(11): 62-65. | |
| 37 | JAMILA E G, EZZAHRA T F, RACHID O, et al. Natural flocculants for the treatment of wastewaters containing dyes or heavy metals: a state-of-the-art review[J]. J Environ Chem Eng, 2021, 9(5): 106060. | 
| 38 | BAKAR S N H A, HASAN H A, ABDULLAH S R S, et al. A review of the production process of bacteria-based polymeric flocculants[J]. J Water Process Eng, 2021, 40: 101915. | 
| 39 | KURNIAWAN S B, IMRON M F, CHIK C E N C E, et al. What compound inside biocoagulants/bioflocculants is contributing the most to the coagulation and flocculation processes?[J]. Sci Total Environ, 2021, 806: 150902. | 
| 40 | LIANG Z X, TU Q Q, SU X X, et al. Formation, extracellular polymeric substances and microbial community of aerobic granules enhanced by microbial flocculant compared with poly-aluminum chloride[J]. J Cleaner Prod, 2019, 220: 544-552. | 
| 41 | SHAHADAT M, TENG T T, RAFATULLAH M, et al. Bacterial bioflocculants: a review of recent advances and perspectives[J]. Chem Eng J, 2017, 328: 1139-1152. | 
| 42 | 王九思, 何兆照, 郭立新, 等. 聚硅酸硫酸铁/壳聚糖复合絮凝剂的制备及其在废水处理中的应用[J]. 应用化学, 2011, 28(1): 27-32. | 
| WANG J S, HE Z Z, GUO L X, et al. Preparation of composite flocculant(polyferric silicate sulfate and chitosan) and its application in wastewater treatment[J]. Chin J Appl Chem, 2011, 28(1): 27-32. | |
| 43 | 洪宇, 丁同昌, 张楠, 等. 复合絮凝剂处理低温低浊水的研究及工艺调试[C]. 中国环境科学学会2022年科学技术年会论文集, 2022: 348-351. | 
| HONG Y, DING T C, ZHANG N, et al. Treatment of low temperature and low turbidity water with compound flocculant and process debugging[C]. Proceedings of the 2022 China Society for Environmental Sciences Science and Technology Annual Conference, 2022: 348-351. | |
| 44 | 许元龙, 刘振民, 张擎天, 等. 低温低浊水混凝剂遴选试验[J]. 广州化工, 2018, 46(14): 67-69. | 
| XU Y L, LIU Z M, ZHANG Q T, et al. Coagulant optimization of low temperature and low turbidity water[J]. Guangzhou Chem Ind, 2018, 46(14): 67-69. | |
| 45 | 闫晓涛, 李杰, 冯淑琪, 等. 响应面法优化混凝处理黄河兰州段低温低浊水[J]. 水资源与水工程学报, 2018, 29(6): 68-74. | 
| YAN X T, LI J, FENG S Q, et al. Optimization of coagulation treatment of low-temperature and low-turbidity water in Lanzhou section of the Yellow River by response surface method[J]. J Water Resources Water Eng, 2018, 29(6): 68-74. | |
| 46 | 程伟, 罗凡, 陶涛. 氯化铁用于低浊度原水的絮凝试验研究[J]. 工业水处理, 2015, 35(12): 71-73. | 
| CHENG W, LUO F, TAO T. Experimental research on ferric chloride applied to the flocculation of low-turbidity water[J]. Ind Water Treat, 2015, 35(12): 71-73. | |
| 47 | CHENG Y C, WANG C P, LIU K Y, et al. Towards sustainable management of polyacrylamide in soil-water environment: occurrence, degradation, and risk[J]. Sci Total Environ, 2024: 171587. | 
| 48 | 陶贤平, 张跃军, 李侠, 等. 二烯丙基甲基烷基溴化铵的结构与性质的关系[J]. 应用化学, 2015, 32(3): 342-349. | 
| TAO X P, ZHANG Y J, LI X, et al. Relationships between structures and properties of diallylmethylalkylammonium bromide[J]. Chin J Appl Chem, 2015, 32(3): 342-349. | |
| 49 | 李潇潇, 张跃军, 赵晓蕾, 等. PAC/PDMDAAC复合混凝剂用于冬季太湖水强化混凝工艺中试放大研究[J]. 应用基础与工程科学学报, 2016, 24(1): 157-167. | 
| LI X X, ZHANG Y J, ZHAO X L, et al. Experimental enlargement of enhanced coagulation process for treatment of low temperature winter taihu raw water using PAC/PDMDAAC composite coagulants[J]. J Basic Sci Eng, 2016, 24(1): 157-167. | |
| 50 | 刘占孟, 叶鑫, 聂发辉. 复合絮凝剂处理冬季低温低浊水的效果及其微观形态[J]. 中国给水排水, 2016, 32(3): 61-65. | 
| LIU Z M, YE X, NIE F H. Flocculation performance and microstructural morphology of PFM-PDMDAAC for treatment of raw water with low temperature and low turbidity in winter[J]. China Water Wastewater, 2016, 32(3): 61-65. | |
| 51 | ZHANG P, LIAO L N, ZHU G C. Performance of PATC-PDMDAAC composite coagulants in low-temperature and low-turbidity water treatment[J]. Materials, 2019, 12(17): 2824. | 
| 52 | ZHANG H, GUAN G H, LOU T, et al. High performance, cost-effective and ecofriendly flocculant synthesized by grafting carboxymethyl cellulose and alginate with itaconic acid[J]. Int J Biol Macromol, 2023, 231: 123305. | 
| 53 | FERASAT Z, PANAHI R, MOKHTARANI B. Natural polymer matrix as safe flocculant to remove turbidity from kaolin suspension: performance and governing mechanism[J]. J Environ Manage, 2020, 255: 109939. | 
| 54 | AZMI A, BUDI K S, SHEIKH A S R, et al. Exploring the extraction methods for plant-based coagulants and their future approaches[J]. Sci Total Environ, 2021, 818: 151668. | 
| 55 | 张洛红, 王文韬, 柴易达, 等. 有机阳离子型絮凝剂处理阴离子印染废水的研究进展[J]. 印染, 2019, 45(18): 51-55. | 
| ZHANG L H, WANG W T, CHAI Y D, et al. Research progress in treatment of anionic dye wastewater with organic cationic flocculants[J]. Dyeing Finish, 2019, 45(18): 51-55. | |
| 56 | LI L L, LUO C N, LI X J, et al. Preparation of magnetic ionic liquid/chitosan/graphene oxide composite and application for water treatment[J]. Int J Biol Macromol, 2014, 66: 172-178. | 
| 57 | AYAD M, SALAHUDDIN N, FAYED A, et al. Chemical design of a smart chitosan-polypyrrole-magnetite nanocomposite toward efficient water treatment[J]. Phys Chem Chem Phys, 2014, 16(39): 21812-21819. | 
| 58 | ABEBE L S, CHEN X, SOBSEY M D. Chitosan coagulation to improve microbial and turbidity removal by ceramic water filtration for household drinking water treatment[J]. Int J Environ Res Public Health, 2016, 13(3): 269. | 
| 59 | JIA R S, WANG W F. Performance of chitosan/PAC enhanced coagulation for low-temperature and low-turbidity Pi river source water[J]. Desalin Water Treat, 2023, 306: 199-207. | 
| 60 | ZHANG Z, JING R, HE S R, et al. Coagulation of low temperature and low turbidity water: adjusting basicity of polyaluminum chloride (PAC) and using chitosan as coagulant aid[J]. Sep Purif Technol, 2018, 206: 131-139. | 
| 61 | 郑怀礼, 刘薇, 孙漫梨. 具有抗菌功能的天然高分子絮凝剂研究进展[J]. 应用化学, 2024, 41(2): 177-189. | 
| ZHENG H L, LIU W, SUN M L. Research progress of natural polymer flocculants with antibacterial function[J]. Chin J Appl Chem, 2024, 41(2): 177-189. | |
| 62 | SUN Y J, ZHU C Y, SUN W Q, et al. Plasma-initiated polymerization of chitosan-based CS-g-P(AM-DMDAAC) flocculant for the enhanced flocculation of low-algal-turbidity water[J]. Carbohydr Polym, 2017, 164: 222-232. | 
| 63 | 周云, 刘英, 张志强, 等. 微生物絮凝剂制备的研究新进展[J]. 环境污染与防治, 2014, 36(4): 80-85, 91. | 
| ZHOU Y, LIU Y, ZHANG Z Q, et al. Recent research progress on the preparation of microbial flocculants[J]. Environ Pollut Control, 2014, 36(4): 80-85, 91. | |
| 64 | HUANG H L, LI J S, TAO W Y, et al. A functionalized polysaccharide from Sphingomonas sp. HL-1 for high-performance flocculation[J]. Polymers, 2022, 15(1): 56. | 
| 65 | CHEN S J Y, CHENG R, XU X D, et al. The structure and flocculation characteristics of a novel exopolysaccharide from a Paenibacillus isolate[J]. Carbohyd Polym, 2022, 291: 119561. | 
| 66 | XIN Y, XIN W, ZHE C, et al. Improved production of an acidic exopolysaccharide, the efficient flocculant, by Lipomyces starkeyi U9 overexpressing UDP-glucose dehydrogenase gene[J]. Int J Biol Macromol, 2020, 165: 1656-1663. | 
| 67 | RAMADHANI A N, SAROSA A N A K W, ROSYAD L H A. The potency of microbial flocculant produced by B. licheniformis using molasses as the carbon source and its application in food industry wastewater treatment[J]. Mater Today: Proce, 2022, 63: S244-S247. | 
| 68 | 李立欣. 基于松花江水源水絮凝沉淀工艺的微生物絮凝剂净水效能研究[D]. 哈尔滨: 哈尔滨工业大学, 2016. | 
| LI L X. Research on water purification efficiency of bioflocculant based on the flocculation sedimentation process for songhua river source water treatment[D]. Harbin: Harbin Institute of Technology, 2016. | |
| 69 | FU L L, JIANG B H, WEI J W, et al. Transcriptome analysis of polysaccharide-based microbial flocculant MBFA9 biosynthesis regulated by nitrogen source[J]. Sci Rep, 2020, 10(1): 2918. | 
| [1] | Fan WU, He-Yuan TIAN, Peng LIU, Li-Wei SUN, Yi-Bo ZHANG, Xiang-Guang YANG. Spinel Mangane-Based Catalysts with High Oxygen Vacancy Used for NH3-SCR Reaction at Low Temperature [J]. Chinese Journal of Applied Chemistry, 2023, 40(5): 697-707. | 
| [2] | Yu-Hua XIONG, Lei ZHOU, Shi-Zhong YANG, Bo-Zhong MU. Enzymatic Properties and Gel Breaking Performance of Low-temperature β-Mannanase [J]. Chinese Journal of Applied Chemistry, 2023, 40(1): 134-145. | 
| [3] | LIU Yang, ZHANG Hai-Bao, CHEN Qiang. Research Progress on Ammonia Synthesis Using Low Temperature Plasma [J]. Chinese Journal of Applied Chemistry, 2021, 38(6): 622-636. | 
| [4] | ZHANG Miao, ZHENG Lei, DING Liang. Rapid Detection System Based on the Weighing Titration Method in Drinking Water [J]. Chinese Journal of Applied Chemistry, 2021, 38(4): 457-464. | 
| [5] | HU Chen,JIN Yi,ZHU Shaoqing,XU Ye,SHUI Jianglan. Methods for Improving Low-Temperature Performance of Lithium Iron Phosphate Based Li-Ion Battery [J]. Chinese Journal of Applied Chemistry, 2020, 37(4): 380-386. | 
| [6] | PAN Ge, LIU Fang, FU Zhilei, LI Shuangshuang, XU Donghua, XU Zhaohua, SHI Tongfei, WANG Xiaowei, MA Rui. Effect of Mass Fraction of Color Paste in Waterborne Polyurethane Coatings on Low Temperature Blasting Properties of Polyvinyl Chloride Skin [J]. Chinese Journal of Applied Chemistry, 2020, 37(2): 182-189. | 
| [7] | SU Fengmei, ZHANG Da, LIANG Feng. Progress in Preparation and Modification of Nano-catalytic Materials by Low-Temperature Plasma [J]. Chinese Journal of Applied Chemistry, 2019, 36(8): 882-891. | 
| [8] | HUAN Yan, LI Xiaoxiao, TIAN Yumeng, WANG Jie, YANG Xiaoniu. Effect of Polyols on the Morphology and Properties of 1,4-Phenylene Diisocyanate-Based Microcellular Polyurethane Elastomers [J]. Chinese Journal of Applied Chemistry, 2017, 34(10): 1110-1116. | 
| [9] | LIU Lan, NIE Fu-De*, ZENG Gui-Yu, QIAO Zhi-Qiang. Preparation of NiO Nanorods by a Solid State Reaction at Low Temperatures under an Ultrasonic Airflow [J]. Chinese Journal of Applied Chemistry, 2010, 27(04): 454-457. | 
| [10] | Sheng Shouri, Cai Mingzhong, Song Caisheng . Synthesis and Characterization of Poly(aryl Ether Sulfone Ether Ketone Ketone) Containing Naphthalene Links [J]. Chinese Journal of Applied Chemistry, 1998, 0(5): 47-49. | 
| Viewed | ||||||||||||||||||||||||||||||||||||||||||||||||||
| 
										Full text 56 
									 | 
									
										
 
  | 
								|||||||||||||||||||||||||||||||||||||||||||||||||
| 
										Abstract 168 
									 | 
									
										
  | 
								|||||||||||||||||||||||||||||||||||||||||||||||||