Chinese Journal of Applied Chemistry ›› 2023, Vol. 40 ›› Issue (5): 697-707.DOI: 10.19894/j.issn.1000-0518.220315
• Full Papers • Previous Articles Next Articles
Fan WU1,2, He-Yuan TIAN1,2, Peng LIU1,2, Li-Wei SUN1(), Yi-Bo ZHANG2,3(), Xiang-Guang YANG1,2,3()
Received:
2022-09-27
Accepted:
2023-03-27
Published:
2023-05-01
Online:
2023-05-26
Contact:
Li-Wei SUN,Yi-Bo ZHANG,Xiang-Guang YANG
About author:
xgyang@gia.cas.cnSupported by:
CLC Number:
Fan WU, He-Yuan TIAN, Peng LIU, Li-Wei SUN, Yi-Bo ZHANG, Xiang-Guang YANG. Spinel Mangane-Based Catalysts with High Oxygen Vacancy Used for NH3-SCR Reaction at Low Temperature[J]. Chinese Journal of Applied Chemistry, 2023, 40(5): 697-707.
Add to citation manager EndNote|Ris|BibTeX
URL: http://yyhx.ciac.jl.cn/EN/10.19894/j.issn.1000-0518.220315
Catalyst | a/nm | D/nm |
---|---|---|
LiMn2O4 | 0.296 0 | 28.0 |
ZnMn2O4 | 0.537 7 | 12.3 |
CrMn2O4 | 0.678 1 | 39.6 |
MnO2 | 0.390 0 | 19.3 |
Table 1 Cell parameters (a) and particle size (D) values of each sample
Catalyst | a/nm | D/nm |
---|---|---|
LiMn2O4 | 0.296 0 | 28.0 |
ZnMn2O4 | 0.537 7 | 12.3 |
CrMn2O4 | 0.678 1 | 39.6 |
MnO2 | 0.390 0 | 19.3 |
Sample | Pore diameter/nm | Pore volume/(cm3?g-1) | |
---|---|---|---|
LiMn2O4 | 22.01 | 3.05 | 0.14 |
ZnMn2O4 | 86.51 | 3.06 | 0.41 |
CrMn2O4 | 66.79 | 3.83 | 0.27 |
MnO2 | 110.601 | 3.82 | 0.34 |
Table 2 Structural characteristic parameters of different catalysts
Sample | Pore diameter/nm | Pore volume/(cm3?g-1) | |
---|---|---|---|
LiMn2O4 | 22.01 | 3.05 | 0.14 |
ZnMn2O4 | 86.51 | 3.06 | 0.41 |
CrMn2O4 | 66.79 | 3.83 | 0.27 |
MnO2 | 110.601 | 3.82 | 0.34 |
Sample | x(Metal)/% | x(Mn)/% | x(O)/% | x(O1)/% | x(O2)/% | x(O3)/% | x(Mn4+)/% |
---|---|---|---|---|---|---|---|
LiMn2O4 | 21.02 | 21.21 | 57.77 | 30.99 | 47.05 | 21.96 | 43.78 |
ZnMn2O4 | 15.75 | 22.06 | 62.19 | 36.49 | 42.73 | 20.78 | 57.70 |
CrMn2O4 | 12.00 | 23.72 | 64.28 | 33.90 | 45.34 | 20.76 | 35.91 |
MnO2 | - | 31.03 | 68.97 | 27.12 | 40.31 | 32.57 | 59.55 |
Table 3 The atomic concentration on the surface of different catalysts
Sample | x(Metal)/% | x(Mn)/% | x(O)/% | x(O1)/% | x(O2)/% | x(O3)/% | x(Mn4+)/% |
---|---|---|---|---|---|---|---|
LiMn2O4 | 21.02 | 21.21 | 57.77 | 30.99 | 47.05 | 21.96 | 43.78 |
ZnMn2O4 | 15.75 | 22.06 | 62.19 | 36.49 | 42.73 | 20.78 | 57.70 |
CrMn2O4 | 12.00 | 23.72 | 64.28 | 33.90 | 45.34 | 20.76 | 35.91 |
MnO2 | - | 31.03 | 68.97 | 27.12 | 40.31 | 32.57 | 59.55 |
Sample | Mn | O | ||||
---|---|---|---|---|---|---|
Mn2+ | Mn3+ | Mn4+ | O1 | O2 | O3 | |
LiMn2O4 | / | 642.3/653.7 | 643.5/654.7 | 529.4 | 530.1 | 532.1 |
ZnMn2O4 | / | 641.9/653.5 | 643.3/654.8 | 530.1 | 530.7 | 531.8 |
CrMn2O4 | 640.8/652.4 | 642.1/653.6 | 643.8/654.8 | 529.9 | 530.5 | 531.6 |
MnO2 | / | 641.8/653.3 | 643.2/654.4 | 529.2 | 529.8 | 532.1 |
Table 4 Binding energy (eV) of atoms on different catalysts
Sample | Mn | O | ||||
---|---|---|---|---|---|---|
Mn2+ | Mn3+ | Mn4+ | O1 | O2 | O3 | |
LiMn2O4 | / | 642.3/653.7 | 643.5/654.7 | 529.4 | 530.1 | 532.1 |
ZnMn2O4 | / | 641.9/653.5 | 643.3/654.8 | 530.1 | 530.7 | 531.8 |
CrMn2O4 | 640.8/652.4 | 642.1/653.6 | 643.8/654.8 | 529.9 | 530.5 | 531.6 |
MnO2 | / | 641.8/653.3 | 643.2/654.4 | 529.2 | 529.8 | 532.1 |
1 | ZHANG N Q, LI L C, GUO Y Z, et al. A MnO2-based catalyst with H2O resistance for NH3-SCR: study of catalytic activity and reactants-H2O competitive adsorption[J]. Appl Catal B: Environ, 2020, 270: 118860. |
2 | ZHAN S H, QIU M Y, YANG S S, et al. Facile preparation of MnO2 doped Fe2O3 hollow nanofibers for low temperature SCR of NO with NH3[J]. J Mater Chem A, 2014, 2(48): 20486-20493. |
3 | YU S H, LU Y Y, GAO F, et al. Study on the crystal plane effect of CuO/TiO2 catalysts in NH3-SCR reaction[J]. Catal Today, 2020, 339: 265-273. |
4 | LIETTI L L, ALEMANY J N, FERLAZZO FORZATTI P, et al. Reactivity and physicochemical characterization of V2O5-WO3/TiO2 De-NOx catalysts[J]. J Catal, 1995, 155: 117-130. |
5 | ZHOU X M, HUANG X Y, XIE A J, et al. V2O5-decorated Mn-Fe/attapulgite catalyst with high SO2 tolerance for SCR of NOx with NH3 at low temperature[J]. Chem Eng J, 2017, 326: 1074-1085. |
6 | ZHANG R D, LUO N, YANG W, et al. Low-temperature selective catalytic reduction of NO with NH3 using perovskite-type oxides as the novel catalysts[J]. J Mol Catal A: Chem, 2013, 371: 86-93. |
7 | LYUMENG Y, LU P, CHEN X B, et al. The deactivation mechanism of toluene on MnOx-CeO2 SCR catalyst [J]. Appl Catal B: Environ, 2020, 277: 119257. |
8 | YANG B, JIN Q J, HUANG Q, et al. Synergetic catalytic removal of chlorobenzene and NO from waste incineration exhaust over MnNb0.4Ce0.2O catalysts: performance and mechanism study[J]. J Rare Earths, 2020, 38(11): 1178-1189. |
9 | WANG X Y, LAN Z X, ZHANG K, et al. Structure-activity relationships of AMn2O4 (A=Cu and Co) spinels in selective catalytic reduction of NOx: experimental and theoretical study[J]. J Phys Chem C, 2017, 121(6): 3339-3349. |
10 | ZHANG Q L, ZHANG Y Q, ZHANG T X, et al. Influence of preparation methods on iron-tungsten composite catalyst for NH3-SCR of NO: the active sites and reaction mechanism[J]. Appl Surf Sci, 2020, 503: 190-202. |
11 | YU C, HOU D, HUANG B, et al. A MnOx@Eu-CeOx nanorod catalyst with multiple protective effects: strong SO2-tolerance for low temperature DeNOx processes[J]. J Hazard Mater, 2020, 399: 123011. |
12 | YOU X C, SHENG Z Y, YU D Q, et al. Influence of Mn/Ce ratio on the physicochemical properties and catalytic performance of graphene supported MnOx-CeO2 oxides for NH3-SCR at low temperature[J]. Appl Surf Sci, 2017, 423: 845-854. |
13 | DONOVAN A P, UPHADE B S, SMIRNIOTIS P G. TiO2-supported metal oxide catalysts for low-temperature selective catalytic reduction of NO with NH3. evaluation and characterization of first row transition metals[J]. J Catal, 2004, 221(2): 421-431. |
14 | LIU L, WANG B D, YAO X J, et al. Highly efficient MnOx/biochar catalysts obtained by air oxidation for low-temperature NH3-SCR of NO[J]. Fuel, 2021, 283: 119336. |
15 | SINGH P P, THATIKONDA T, KUMAR K A, et al. Cu-Mn spinel oxide catalyzed regioselective halogenation of phenols and N-heteroarenes[J]. Org Chem, 2012, 77: 5823-5828. |
16 | GAO F Y, TANG X L, SANI Z D, et al. Spinel-structured Mn-Ni nanosheets for NH3-SCR of NO with good H2O and SO2 resistance at low temperature[J]. Catal Sci Technol, 2020, 10(22): 7486-7501. |
17 | KANG M, YEON T H, PARK E D, et al. Novel MnOx catalysts for NO reduction at low temperature with ammonia[J]. Catal Lett, 2006, 106(1/2): 77-80. |
18 | LIU C, SHI J W, GAO C, et al. Manganese oxide-based catalysts for low-temperature selective catalytic reduction of NOx with NH3: a review[J]. Appl Catal B: General, 2016, 522: 54-69. |
19 | KIM K J, LEE J H, KOH T Y, et al. Improved cyclic stability by octahedral Co3+ substitution in spinel lithium manganese oxide thin-film cathode for rechargeable microbattery[J]. Electrochim Acta, 2016, 200: 84-89. |
20 | QI F H, XIONG S C, LIAO Y, et al. A novel dual layer SCR catalyst with a broad temperature window for the control of NO emission from diesel bus[J]. Catal Commun, 2015, 65: 108-112. |
21 | QI G S, YANG R T, et al. Performance and kinetics study for low-temperature SCR of NO with NH3 over MnOx-CeO2 catalyst[J]. J Catal, 2003, 217(2): 434-441. |
22 | JONG H L, SCHMIEG S J, OH SE H. Improved NOx reduction over the staged Ag/Al2O3 catalyst system[J]. Appl Catal A: General, 2008, 342(1/2): 78-86. |
23 | HAN L, CAI S, GAO M, et al. Selective catalytic reduction of NOx with NH3 by using novel catalysts: state of the art and future prospects[J]. Chem Rev, 2019, 119(19): 10916-10976. |
24 | GAO F Y, TANG X L, YI H H, et al. Improvement of activity, selectivity and H2O&SO2-tolerance of micro-mesoporous CrMn2O4 spinel catalyst for low-temperature NH3-SCR of NOx[J]. Appl Surf Sci, 2019, 466: 411-424. |
25 | GAO F Y, TANG X L, YI H H, et al. In-situ DRIFTS for the mechanistic studies of NO oxidation over α-MnO2, β-MnO2 and γ-MnO2 catalysts[J]. Chem Eng J, 2017, 322: 525-537. |
26 | LIAM J F, YANG Q, LI W, et al. Ceria modified FeMnO—enhanced performance and sulphur resistance for low-temperature SCR of NOx[J]. Appl Catal B: Environ, 2017, 206: 203-215. |
27 | YI T, LI J W, ZHANG Y B, et al. A novel nano-sized catalyst CeO2-CuO/hollow ZSM-5 for NOx reduction with NH3[J]. Chem Res Chin Univ, 2018, 34(4): 661-664. |
28 | JIANG B, DENG B, ZHANG Z, et al. Effect of Zr addition on the low-temperature SCR activity and SO2 tolerance of Fe-Mn/Ti catalysts[J]. J Phys Chem C, 2014, 118: 14866-14875. |
[1] | Hui-Hui LI, Kai-Sheng YAO, Ya-Nan ZHAO, Li-Na FAN, Yu-Lin TIAN, Wei-Wei LU. Ionic Liquid-Modulated Synthesis of Pt-Pd Bimetallic Nanomaterials and Their Catalytic Performance for Ammonia Borane Hydrolysis to Generate Hydrogen [J]. Chinese Journal of Applied Chemistry, 2023, 40(4): 597-609. |
[2] | Bing LI, Jun-Hui LIU, Ya-Kun SONG, Xiang LI, Xu-Ming GUO, Jian XIONG. Recent Advances in Application of Metal-Organic Frameworks for Hydrogen Generation by Catalytic Hydrolysis of Ammonia Borane [J]. Chinese Journal of Applied Chemistry, 2023, 40(3): 329-340. |
[3] | Yang LIU, Hai-Bao ZHANG, Qiang CHEN. Optimization of Process Parameters for Ammonia Synthesis by Nanosecond Pulsed Dielectric Barrier Discharge Plasma [J]. Chinese Journal of Applied Chemistry, 2023, 40(2): 268-276. |
[4] | Rong CAO, Jie-Zhen XIA, Man-Hua LIAO, Lu-Chao ZHAO, Chen ZHAO, Qi WU. Theoretical Research Progress of Single Atom Catalysts in Electrochemical Synthesis of Ammonia [J]. Chinese Journal of Applied Chemistry, 2023, 40(1): 9-23. |
[5] | LIU Yang, ZHANG Hai-Bao, CHEN Qiang. Research Progress on Ammonia Synthesis Using Low Temperature Plasma [J]. Chinese Journal of Applied Chemistry, 2021, 38(6): 622-636. |
[6] | LIU Jun-Hui, GUO Xu-Ming, SONG Ya-Kun, GUO Xin-Wen. Recent Advances in Hydrogen Generation by Catalytic Hydrolysis of Ammonia Borane [J]. Chinese Journal of Applied Chemistry, 2021, 38(2): 157-169. |
[7] | LIU Lin-Chang, GUO Ya-Jun, ZHU Hong-Lin, MA Jing-Jing, LI Zhong-Yi, SHUI Miao, ZHENG Yue-Qing. Research Progress on Supported Ultrafine Nano-catalysts for Hydrolytic Dehydrogenation of Ammonia Borane [J]. Chinese Journal of Applied Chemistry, 2021, 38(11): 1405-1422. |
[8] | BI Yipiao, GONG Xue, YANG Fa, RUAN Mingbo, SONG Ping, XU Weilin. Polyvalent MnOx/C Electrocatalyst for Highly Efficient Nitrogen Reduction Reaction [J]. Chinese Journal of Applied Chemistry, 2020, 37(9): 1048-1055. |
[9] | PENG Bingxian, WANG Xiaoli, LIU Ruihan, ZHOU Aihong. Degradation of Ammonia-Nitrogen in Wastewater by TiO2/Pumice Photocatalyst under Solar Light [J]. Chinese Journal of Applied Chemistry, 2017, 34(8): 946-954. |
[10] | LI Yuhe, HU Hailong. Hydrothermal Synthesis of an Approximate Two-Dimensional Hexgonal Nickel Nanoplatelets [J]. Chinese Journal of Applied Chemistry, 2017, 34(8): 918-927. |
[11] | DING Ding, WANG Qi, JIN Fang, CHEN Yazhong, CUI Peng, LIU Rong, SHEN Hao. Influences of the Ammonia Evaporation Pressure on the Structure of Cu/SiO2 Catalysts and Catalytic Performances for Dimethyl Oxalate Hydrogenation to Ethylene Glycol [J]. Chinese Journal of Applied Chemistry, 2016, 33(4): 466-472. |
[12] | HUANG Lu1, YANG Yao1, PAN Daodong1,2*. Electrocatalytic Oxidation of Ammonia with Ir Catalysts Supported on TiO2 [J]. Chinese Journal of Applied Chemistry, 2013, 30(05): 584-589. |
[13] | YU Mingzhu1, LI linru1, LU Tianhong1, CHEN Zhaoyang2, MA Chunan2, DU Jiangyan1*. Electrocatalytic Performanace of Ir Catalyst Supported on Mixture of WC and Vulcan XC-72 Carbon for Ammonia Oxidation [J]. Chinese Journal of Applied Chemistry, 2013, 30(04): 448-452. |
[14] | LI Linru1, CHEN Chong1, XU Bin2, CAO Gaoping2, YANG Yusheng2, LU Tianhong1,3*. Electrocatalytic Performance of Ir Catalyst Supported on Macropore Carbon for Ammonia Oxidation [J]. Chinese Journal of Applied Chemistry, 2012, 29(01): 95-99. |
[15] | TANG Yawen1,2, XIE Guofang2, KONG Qingmei2, CHEN Yu2, LU Lude1, LU Tianhong2*. Preparation of Carbon Supported Ir-Co Catalyst and Its Electrocatalytic Performance for Ammonia Oxidation [J]. Chinese Journal of Applied Chemistry, 2011, 28(08): 931-935. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||