1 |
LIU H, YANG S, NI Y. Comparison of dye behavior from aspen HYP: dyes added in the HYP manufacturing process versus dyes added at the papermaking wet end[J]. J Wood Chem Technol, 2010, 30(2): 118-128.
|
2 |
FENG Q Y, GAO B Y, YUE Q Y, et al. Flocculation performance of papermaking sludge-based flocculants in different dye wastewater treatment: comparison with commercial lignin and coagulants[J]. Chemosphere, 2021, 262: 128416.
|
3 |
LI Q, DONG K, TU Y, et al. Current situation and problems of MBR treatment process in dye wastewater[C]. IOP Conf Ser: Earth Environ Sci, 2019, 358: 022043.
|
4 |
BELDEAN-GALEA M S, COPACIU F M, COMAN M V. Chromatographic analysis of textile dyes[J]. J AOAC Int, 2018, 101(5): 1353-1370.
|
5 |
UDDIN F. Environmental hazard in textile dyeing wastewater from local textile industry[J]. Cellulose, 2021, 28(17): 10715-10739.
|
6 |
MOYO S, MAKHANYA B P, ZWANE P E. Use of bacterial isolates in the treatment of textile dye wastewater: a review[J]. Heliyon, 2022, 8(6): e09632.
|
7 |
RAMAN C D, KANMANI S. Textile dye degradation using nano zero valent iron: a review[J]. J Environ Manage, 2016, 177: 341-355.
|
8 |
LEE M, NAM K T, KIM J, et al. Evaluation of ocular irritancy of coal-tar dyes used in cosmetics employing reconstructed human cornea-like epithelium and short time exposure tests[J]. Food Chem Toxicol,2017, 108: 236-243.
|
9 |
WARGALA E, SLAWSKA M, ZALEWSKA A, et al. Health effects of dyes, minerals, and vitamins used in cosmetics[J]. Women, 2021, 1: 223-237.
|
10 |
PASDARAN A, AZARPIRA N, HEIDARI R, et al. Effects of some cosmetic dyes and pigments on the proliferation of human foreskin fibroblasts and cellular oxidative stress; potential cytotoxicity of chlorophyllin and indigo carmine on fibroblasts[J]. J Cosmet Dermatol, 2022, 21(9): 3979-3985.
|
11 |
TU Y M, SHAO G Y, ZHANG W J, et al.The degradation of printing and dyeing wastewater by manganese-based catalysts[J]. Sci Total Environ, 2022, 828: 154390.
|
12 |
LIU Z C, KHAN T A, ISLAM M A, et al. A review on the treatment of dyes in printing and dyeing wastewater by plant biomass carbon[J]. Bioresour Technol,2022, 354: 127168.
|
13 |
DANG G H, TRAN Y B N, PHAM T V, et al. A cerium-containing metal-organic framework: synthesis and heterogeneous catalytic activity toward Fenton-like reactions[J]. ChemPlusChem,2019, 84(8): 1046-1051.
|
14 |
ZHANG X, WANG J, DONG X X, et al. Functionalized metal-organic frameworks for photocatalytic degradation of organic pollutants in environment[J]. Chemosphere, 2020, 242: 125144.
|
15 |
ZHAO T C, LIU R, LU J P, et al. Photocatalytic degradation of methylene blue solution by diphenylanthrazoline compounds[J]. J Phys Org Chem, 2017, 30(12): e3712.
|
16 |
ROY A, PRADHAN M, RAY C, et al. Facile synthesis of pyridine intercalated ultra-long V2O5 nanowire from commercial V2O5: catalytic applications in selective dye degradation[J]. CrystEngComm, 2014, 16(33): 7738-7744.
|
17 |
WU W B, MAO D, XU S D, et al. Polymerization-enhanced photosensitization[J]. Chem,2018, 4(8): 1937-1951.
|
18 |
ZHANG S T, WANG Z M, YAO L Z, et al. Preparation of perylene diimide modified AgCl photocatalyst and its photocatalytic performance for degrading various organic pollutants under visible light[J]. Colloids Surfaces A, 2022, 652: 129902.
|
19 |
QU X, LIN J B, QIANG W, et al.Self-doped defect-mediated TiO2 with disordered surface for high-efficiency photodegradation of various pollutants[J]. Chemosphere, 2022, 308: 136239.
|
20 |
ELUMALAI N, PRABHU S, SELVARAJ M, et al. Enhanced photocatalytic activity of ZnO hexagonal tube/r-GO composite on degradation of organic aqueous pollutant and study of charge transport properties[J]. Chemosphere, 2022, 291: 132782.
|
21 |
DAI C H, LIU B. Conjugated polymers for visible-light-driven photocatalysis[J]. Energy Environ Sci, 2020, 13(1): 24-52.
|
22 |
XU X Y, ZHOU X S, ZHANG L L, et al. Photoredox degradation of different water pollutants (MO, RhB, MB, and Cr(Ⅵ)) using Fe-N-S-tri-doped TiO2 nanophotocatalyst prepared by novel chemical method[J]. Mater Res Bull, 2015, 70: 106-113.
|
23 |
MIA M S, YAO P, ZHU X W, et al. Degradation of textile dyes from aqueous solution using tea-polyphenol/Fe loaded waste silk fabrics as Fenton-like catalysts[J]. RSC Adv, 2021, 11(14): 8290-8305.
|
24 |
RANI B, PUNNIYAKOTI S, SAHU N K. Polyol asserted hydrothermal synthesis of SnO2 nanoparticles for the fast adsorption and photocatalytic degradation of methylene blue cationic dye[J]. New J Chem, 2018, 42(2): 943-954.
|
25 |
ROUTOULA E, PATWARDHAN S V. Degradation of anthraquinone dyes from effluents: a review focusing on enzymatic dye degradation with industrial potential[J]. Environ Sci Technol, 2020, 54(2): 647-664.
|
26 |
ZHANG S, LI B F, WANG X X, et al. Recent developments of two-dimensional graphene-based composites in visible-light photocatalysis for eliminating persistent organic pollutants from wastewater[J]. Chem Eng J, 2020, 390: 124642.
|
27 |
KHASAWNEH O F S, PALANIANDY P. Removal of organic pollutants from water by Fe2O3/TiO2 based photocatalytic degradation: a review[J]. Environ Technol Innovation, 2021, 21: 101230.
|
28 |
GAO Z W, PAN C Q, CHOI C H, et al. Continuous-flow photocatalytic microfluidic-reactor for the treatment of aqueous contaminants, simplicity, and complexity: a mini-review[J]. Symmetry, 2021, 13(8): 1325.
|
29 |
JUN L Y, YON L S, MUBARAK N M, et al. An overview of immobilized enzyme technologies for dye and phenolic removal from wastewater[J]. J Environ Chem Eng, 2019, 7(2): 102961.
|
30 |
LI Q, FAN Z L, XUE D X, et al. A multi-dye@MOF composite boosts highly efficient photodegradation of an ultra-stubborn dye reactive blue 21 under visible-light irradiation[J]. J Mater Chem A, 2018, 6(5): 2148-2156.
|
31 |
LI J S, WEN X H, ZHANG Q J, et al. Adsorption and visible-light photodegradation of organic dyes with TiO2/conjugated microporous polymer composites[J]. RSC Adv, 2018, 8(60): 34560-34565.
|
32 |
SHARMA A, DUTTA R K. Studies on the drastic improvement of photocatalytic degradation of acid orange-74 dye by TPPO capped CuO nanoparticles in tandem with suitable electron capturing agents[J]. RSC Adv, 2015, 5(54): 43815-43823.
|
33 |
LESHUK T, HOLMES A B, RANATUNGA D, et al. Magnetic flocculation for nanoparticle separation and catalyst recycling[J]. Environ Sci: Nano, 2018, 5(2): 509-519.
|
34 |
LI S X, HU T Y, XU Y Z, et al. A review on flocculation as an efficient method to harvest energy microalgae: mechanisms, performances, influencing factors and perspectives[J]. Renewable Sustainable Energy Rev, 2020, 131: 110005.
|
35 |
SUN Y J, LI D, LU X, et al. Flocculation of combined contaminants of dye and heavy metal by nano-chitosan flocculants[J]. J Environ Manage, 2021, 299: 113589.
|
36 |
SHI Y Q, YANG Z L, XING L, et al. Recent advances in the biodegradation of azo dyes[J]. World J Microbiol Biotechnol, 2021, 37(8): 137.
|
37 |
DAYI B, ONAC C, KAYA A, et al. New type biomembrane: transport and biodegradation of reactive textile dye[J]. ACS Omega, 2020, 5(17): 9813-9819.
|
38 |
NGUYEN T A, FU C C, JUANG R S. Biosorption and biodegradation of a sulfur dye in high-strength dyeing wastewater by acidithiobacillus thiooxidans[J]. J Environ Manage, 2016, 182: 265-271.
|
39 |
FAN J X, CHEN D Y, LI N J, et al. Adsorption and biodegradation of dye in wastewater with Fe3O4@MIL-100 (Fe) core-shell bio-nanocomposites[J]. Chemosphere, 2018, 191: 315-323.
|
40 |
SUN K, WANG L F, WU C Z, et al. Fabrication of α-Fe2O3@rGO/PAN nanofiber composite membrane for photocatalytic degradation of organic dyes[J]. Adv Mater Interfaces, 2017, 4(24): 1700845.
|
41 |
SUBAIHI A, NAGLAH A M. Facile synthesis and characterization of Fe2O3 nanoparticles using L-lysine and L-serine for efficient photocatalytic degradation of methylene blue dye[J]. Arabian J Chem, 2022, 15: 103613.
|
42 |
HITAM C N C, JALIL A A. A review on exploration of Fe2O3 photocatalyst towards degradation of dyes and organic contaminants[J]. J Environ Manage, 2020, 258: 110050.
|
43 |
LI D W, YU S Y, GENG H J, et al. The (002) exposing facets of WO3 boosting photocatalytic degradation of nitrobenzene[J]. Appl Surf Sci, 2023, 607: 154996.
|
44 |
SHANG Y R, CUI Y P, SHI R X, et al. Depositing Ag3PO4 on WO3 hollow microspheres at room temperature for rapid photocatalytic degradation of rhodamine B[J]. Prog Nat Sci, 2022, 32(3): 282-288.
|
45 |
GAO H G, ZHU L J, PENG X, et al. Fe-doped WO3 nanoplates with excellent bifunctional performances: gas sensing and visible light photocatalytic degradation[J]. Appl Surf Sci, 2022, 592: 153310.
|
46 |
NIE J, LI C Y, JIN Z Y, et al. Fabrication of MCC/Cu2O/GO composite foam with high photocatalytic degradation ability toward methylene blue[J]. Carbohydr Polym, 2019, 223: 115101.
|
47 |
ZHAO Q, WANG K, WANG J L, et al. Cu2O nanoparticle hyper-cross-linked polymer composites for the visible-light photocatalytic degradation of methyl orange[J]. ACS Appl Nano Mater, 2019, 2(5): 2706.
|
48 |
ZHANGA J F, ZHANG Z Q, ZHU W H, et al. Boosted photocatalytic degradation of rhodamine B pollutants with Z-scheme CdS/AgBr-rGO nanocomposite[J]. Appl Surf Sci, 2020, 502: 144275.
|
49 |
HU L X, DENG G H, LU W C, et al. Deposition of CdS nanoparticles on MIL-53(Fe) metal-organic framework with enhanced photocatalytic degradation of RhB under visible light irradiation[J]. Appl Surf Sci, 2017, 410: 401-413.
|
50 |
BAKHTKHOSH P, MEHRIZAD A. Sonochemical synthesis of Sm-doped ZnS nanoparticles for photocatalytic degradation of direct blue 14: experimental design by response surface methodology and development of a kinetics model[J]. J Mol Liq, 2017, 240: 65-73.
|
51 |
WU M H, LI L, LIU N, et al. Molybdenum disulfide (MoS2) as a co-catalyst for photocatalytic degradation of organic contaminants: a review[J]. Process Saf Environ Prot, 2018, 118: 40-58.
|
52 |
ZHOU H, QU W J, WU M, et al. Synthesis of novel BiOBr/Bio-veins composite for photocatalytic degradation of pollutants under visible-light[J]. Surf Interfaces, 2022, 28: 101668.
|
53 |
QU J N, SUN X Y, YANG C L, et al. Novel p-n type polyimide aerogels/BiOBr heterojunction for visible light activated high efficient photocatalytic degradation of organic contaminants[J]. J Alloys Compd, 2022, 900: 163469.
|
54 |
ALANSI A M, AL-QUNAIBIT M, ALADE I O, et al. Visible-light responsive BiOBr nanoparticles loaded on reduced graphene oxide for photocatalytic degradation of dye[J]. J Mol Liq, 2018, 253: 297-304.
|
55 |
NATH I, CHAKRABORTY J, VERPOORT F. Degradation of environmental contaminants by topical heterogeneous photocatalysts[M]. Amsterdam: Elsevier Biomedical Press, 2020: 151-182.
|
56 |
WU M, ZHANG J, LIU C X, et al. Rational design and fabrication of noble-metal-free NixP cocatalyst embedded 3D n-TiO2/g-C3N4 heterojunctions with enhanced photocatalytic hydrogen evolution[J]. ChemCatChem, 2018, 10(14): 3069-3077.
|
57 |
YUAN Y J, LU H W, YU Z T, et al. Noble-metal-free molybdenum disulfide cocatalyst for photocatalytic hydrogen production[J]. ChemSusChem, 2015, 8(24): 4113-4127.
|
58 |
SHEN H D, PEPPEL T, STRUNK J, et al. Photocatalytic reduction of CO2 by metal-free-based materials: recent advances and future perspective[J]. Sol RRL, 2020, 4(8): 1900546.
|
59 |
RAN J R, GUO W W, WANG H L, et al. Metal-free 2D/2D phosphorene/g-C3N4 van der waals heterojunction for highly enhanced visible-light photocatalytic H2 production[J]. Adv Mater, 2018, 30(25): 1800128.
|
60 |
NIKAM L, PANMAND R, KADAM S, et al. Enhanced hydrogen production under visible light source and dye degradation under natural sunlight using nanostructured doped zinc orthotitanates[J]. New J Chem, 2015, 39(5): 3821-3834.
|
61 |
KUSH P, DEORI K, KUMAR A, et al. Efficient hydrogen/oxygen evolution and photocatalytic dye degradation and reduction of aqueous Cr(VI) by surfactant free hydrophilic Cu2ZnSnS4 nanoparticles[J]. J Mater Chem A, 2015, 3(15): 8098-8106.
|
62 |
TALUKDAR S, DUTTA R K. A mechanistic approach for superoxide radicals and singlet oxygen mediated enhanced photocatalytic dye degradation by selenium doped ZnS nanoparticles[J]. RSC Adv, 2016, 6(2): 928-936.
|
63 |
KSHIRSAGAR A S, KHANNA P K. CuSbSe2/TiO2: novel type-II heterojunction nano-photocatalyst[J]. Mater Chem Front, 2019, 3(3): 437-449.
|
64 |
SHEN G D, PU Y P, SUN R J, et al. Enhanced visible light photocatalytic performance of a novel heterostructured Bi4Ti3O12/BiOBr photocatalyst[J]. New J Chem, 2019, 43(33): 12932-12940.
|
65 |
SHEN G D, PU Y P, CUI Y F, et al. Effect of ferroelectric Ba0.8Sr0.2TiO3 on the charge carrier separation of BiOBr at different temperature[J]. Appl Surf Sci, 2021, 550: 149366.
|
66 |
AU V K M, KWAN S Y, LAI M N, et al. Dual-functional mesoporous copper(Ⅱ) metal-organic frameworks for the remediation of organic dyes[J]. Chem Eur J, 2021, 27(35): 9174-9179.
|
67 |
XAMENA F X L, CORMA A, GARCIA H. Applications for metal-organic frameworks (MOFs) as quantum dot semiconductors[J]. J Phys Chem C, 2007, 111(1): 80-85.
|
68 |
LIU C X, ZHANG W H, WANG N, et al. Highly efficient photocatalytic degradation of dyes by a copper triazolate metal-organic framework[J]. Chem Eur J, 2018, 24(63): 16804-16813.
|
69 |
TIWARI A, SAGARA P S, VARMA V, et al. Bimetallic metal organic frameworks as magnetically separable heterogeneous catalyst for efficient organic transformation and photocatalytic dye degradation[J]. ChemPlusChem, 2019, 84(1): 136.
|
70 |
DAI D L, QIU J H, ZHANG L, et al. Amino-functionalized Ti-metal-organic framework decorated BiOI sphere for simultaneous elimination of Cr(VI) and tetracycline[J]. J Colloid Interface Sci, 2022, 607: 933-941.
|
71 |
LIN H D, JIE B R, YE J Y, et al. Recent advance of macroscopic metal-organic frameworks for water treatment: a review[J]. Surf Interfaces, 2023, 36: 102564.
|
72 |
WU M, ZHANG J, LIU C X, et al. Rational design and fabrication of noble-metal-free NixP cocatalyst embedded 3D N-TiO2/g-C3N4 heterojunctions with enhanced photocatalytic hydrogen evolution[J]. ChemCatChem, 2018, 10(14): 3069-3077.
|
73 |
LI X B, XIONG J, GAO X M, et al. Recent advances in 3D g-C3N4 composite photocatalysts for photocatalytic water splitting, degradation of pollutants and CO2 reduction[J]. J Alloys Compd, 2019, 802: 196-209.
|
74 |
NATH K, CHANDRA M, PRADHAN D, et al. Supramolecular organic photocatalyst containing a cubanelike water cluster and donor-acceptor stacks: hydrogen evolution and dye degradation under visible light[J]. ACS Appl Mater Interfaces, 2018, 10(35): 29417-29424.
|
75 |
PORNRUNGROJ C, ONODERA T, OIKAWA H. PCBM nanoparticles as visible-light-driven photocatalysts for photocatalytic decomposition of organic dyes[J]. MRS Commun, 2019, 9(1): 321-326.
|
76 |
MOHAMED M G, ELSAYED M H, ELEWA A M, et al. Pyrene-containing conjugated organic microporous polymers for photocatalytic hydrogen evolution from water[J]. Catal Sci Technol, 2021, 11(6): 2229-2241.
|
77 |
ZHANG Z W, JIA J, ZHI Y F, et al. Porous organic polymers for light-driven organic transformations[J]. Chem Soc Rev, 2022, 51(7): 2444-2490.
|
78 |
GHOSH S, KOUAMÉ N A, RAMOS L, et al. Conducting polymer nanostructures for photocatalysis under visible light[J]. Nat Mater, 2015, 14(5): 505-511.
|
79 |
GHASIMI S, PRESCHER S, WANG Z J, et al. Heterophase photocatalysts from water-soluble conjugated polyelectrolytes: an example of self-initiation under visible light[J]. Angew Chem Int Ed, 2015, 54(48): 14549-14553.
|
80 |
NATHA I, CHAKRABORTYA J, HEYNDERICKXC P M, et al. Engineered synthesis of hierarchical porous organic polymers for visible light and natural sunlight induced rapid degradation of azo, thiazine and fluorescein based dyes in a unique mechanistic pathway[J]. Appl Catal B, 2018, 227: 102-113.
|
81 |
WANG J H, YANG H S, JIANG L, et al. Highly efficient removal of organic pollutants by ultrahigh-surface-area-ethynylbenzene-based conjugated microporous polymers via adsorption-photocatalysis synergy[J]. Catal Sci Technol, 2018, 8(19): 5024-5033.
|
82 |
WANG B, XIE Z, LI Y S, et al. Dual-functional conjugated nanoporous polymers for efficient organic pollutants treatment in water: a synergistic strategy of adsorption and photocatalysis[J]. Macromolecules, 2018, 51(9): 3443-3449.
|
83 |
HUANG Q, GUO L P, WANG N, et al. Layered thiazolo[5,4-d] thiazole-linked conjugated microporous polymers with heteroatom adoption for efficient photocatalysis application[J]. ACS Appl Mater Interfaces, 2019, 11(17): 15861-15868.
|
84 |
CHEN T, LI W Q, CHEN X J, et al. A triazine-based analogue of graphyne: scalable synthesis and applications in photocatalytic dye degradation and bacterial inactivation[J]. Chem Eur J, 2020, 26(10): 2269-2275.
|
85 |
CAO Y P, LIU W, QIAN J, et al. Porous organic polymers containing a sulfur skeleton for visible light degradation of organic dyes[J]. Chem Asian J, 2019, 14(16): 2883-2888.
|
86 |
XU C, XIE Q J, ZHANG W J, et al. A vinylene-bridged conjugated covalent triazine polymer as a visible-light-active photocatalyst for degradation of methylene blue[J]. Macromol Rapid Commun, 2020, 41(7): 2000006.
|
87 |
CHAE J A, JEONG S, KIM H J, et al. Fibrous mesoporous polymer monoliths: macromolecular design and enhanced photocatalytic degradation of aromatic dyes[J]. Polym Chem, 2021, 12(16): 2464-2470.
|
88 |
WANG H, GUAN L J, LIU J W, et al. A thiazolo[5,4-d]thiazole functionalized covalent triazine framework showing superior photocatalytic activity for hydrogen production and dye degradation[J]. J Mater Chem A, 2022, 10(30): 16328-16336.
|