Chinese Journal of Applied Chemistry ›› 2025, Vol. 42 ›› Issue (5): 642-655.DOI: 10.19894/j.issn.1000-0518.240358
• Review • Previous Articles
Jian-Jun LI(
), Jia-Ye HE, Bi-Hai HOU
Received:2024-11-07
Accepted:2025-03-21
Published:2025-05-01
Online:2025-06-05
Contact:
Jian-Jun LI
About author:724722548@qq.comSupported by:CLC Number:
Jian-Jun LI, Jia-Ye HE, Bi-Hai HOU. Research Advancements in the Visual Detection of Lip Prints Using Fluorescent Nanomaterials[J]. Chinese Journal of Applied Chemistry, 2025, 42(5): 642-655.
Add to citation manager EndNote|Ris|BibTeX
URL: http://yyhx.ciac.jl.cn/EN/10.19894/j.issn.1000-0518.240358
| Sr. No. | Type of features | Graphic symbols | Sr. No. | Type of features | Graphic symbols |
|---|---|---|---|---|---|
| 1 | A horizontal line | ![]() | 12 | An enclosure | ![]() |
| 2 | A horizontal bifurcation | ![]() | 13 | Thorn like | ![]() |
| 3 | Horizontal intersected bifurcations | ![]() | 14 | A kite | ![]() |
| 4 | A vertical arch | ![]() | 15 | Firework like | ![]() |
| 5 | A horizontal arch | ![]() | 16 | A quadrilateral | ![]() |
| 6 | An uphill | ![]() | 17 | A twin triangle | ![]() |
| 7 | A vertical curved bifurcation | ![]() | 18 | A spider | ![]() |
| 8 | A horizontal curved bifurcation | ![]() | 19 | A diamond | ![]() |
| 9 | A double bifurcation | ![]() | 20 | Curved short ridges | ![]() |
| 10 | A trifurcation | ![]() | 21 | An hourglass | ![]() |
| 11 | A hooked bifurcation | ![]() | 22 | Tented branches | ![]() |
Table 1 Detail feature division situation[24]
| Sr. No. | Type of features | Graphic symbols | Sr. No. | Type of features | Graphic symbols |
|---|---|---|---|---|---|
| 1 | A horizontal line | ![]() | 12 | An enclosure | ![]() |
| 2 | A horizontal bifurcation | ![]() | 13 | Thorn like | ![]() |
| 3 | Horizontal intersected bifurcations | ![]() | 14 | A kite | ![]() |
| 4 | A vertical arch | ![]() | 15 | Firework like | ![]() |
| 5 | A horizontal arch | ![]() | 16 | A quadrilateral | ![]() |
| 6 | An uphill | ![]() | 17 | A twin triangle | ![]() |
| 7 | A vertical curved bifurcation | ![]() | 18 | A spider | ![]() |
| 8 | A horizontal curved bifurcation | ![]() | 19 | A diamond | ![]() |
| 9 | A double bifurcation | ![]() | 20 | Curved short ridges | ![]() |
| 10 | A trifurcation | ![]() | 21 | An hourglass | ![]() |
| 11 | A hooked bifurcation | ![]() | 22 | Tented branches | ![]() |
| Year | Materials | Method | λex/nm | Ref. |
|---|---|---|---|---|
| 2004 | Nile red | Electrostatic adsorption | 553 | [ |
| 2007 | RE-Descent | Electrostatic adsorption | 390 | [ |
| 2010 | Sudan black | Electrostatic adsorption | 590~610 | [ |
| 2019 | Diamond ? | Electrostatic adsorption | 375 | [ |
| 2021 | Indigo | Chemical bonding | 610~650 | [ |
| 2021 | Roselle extract | Chemical bonding | 375 | [ |
| 2022 | Indigo | Chemical bonding | 610~650 | [ |
Table 2 Research summary of visual detection of lip print by organic fluorescent materials
| Year | Materials | Method | λex/nm | Ref. |
|---|---|---|---|---|
| 2004 | Nile red | Electrostatic adsorption | 553 | [ |
| 2007 | RE-Descent | Electrostatic adsorption | 390 | [ |
| 2010 | Sudan black | Electrostatic adsorption | 590~610 | [ |
| 2019 | Diamond ? | Electrostatic adsorption | 375 | [ |
| 2021 | Indigo | Chemical bonding | 610~650 | [ |
| 2021 | Roselle extract | Chemical bonding | 375 | [ |
| 2022 | Indigo | Chemical bonding | 610~650 | [ |
| Year | Materials | Synthetic method | Particle size /nm | λex/nm | Luminous color | Ref. |
|---|---|---|---|---|---|---|
| 2017 | BaTiO3∶Dy3+ | Sonochemistry | 35 | 254 | White | [ |
| 2018 | LaOF∶Sm3+ | Sonochemistry | 20 | 406 | White | [ |
| 2018 | CaAl2O4∶Eu2+/Dy3+ | Combustion | 33 | 326 | Blue | [ |
| 2020 | BiOCl∶Tb3+/Li+ | Combustion | 37 | 254 | Green | [ |
| 2022 | BiOCl∶Tb3+ | Combustion | 37 | 365 | Green | [ |
| 2022 | LaNb2VO9∶Dy3+ | Solid-Phase | 30 | 307 | Yellow | [ |
| 2022 | LaNb2VO9∶Sm3+ | Solid-Phase | 39 | 308 | Orange-red | [ |
| 2023 | ZAO∶5Co2+ | Combustion | 22 | 320 | Blue | [ |
| 2023 | BaSrY4O8∶Eu3+ | Combustion | 19 | 365/395 | Red or purple | [ |
| 2023 | Sr9Al6O18∶Er3+ | Combustion | 29 | 378 | Green | [ |
| 2023 | GdCaAl3O7∶Eu3+ | Combustion | 37 | 375 | Orange-red | [ |
| 2023 | Sr6Al4Y2O15∶Er3+ | Combustion | 23 | 375 | Green | [ |
| 2024 | Sr9Al6O18∶Dy3+ | Combustion | 37 | 350 | White | [ |
| 2024 | Sr2MgSi2O7∶Fe3+ | Combustion | 53 | 345 | Orange-red | [ |
| 2024 | BiOCl∶Sm3+ | Solid-Phase | 21 | 408 | Orange-red | [ |
Table 3 Research summary of visual detection of lip print by rare earth luminescent nano-materials
| Year | Materials | Synthetic method | Particle size /nm | λex/nm | Luminous color | Ref. |
|---|---|---|---|---|---|---|
| 2017 | BaTiO3∶Dy3+ | Sonochemistry | 35 | 254 | White | [ |
| 2018 | LaOF∶Sm3+ | Sonochemistry | 20 | 406 | White | [ |
| 2018 | CaAl2O4∶Eu2+/Dy3+ | Combustion | 33 | 326 | Blue | [ |
| 2020 | BiOCl∶Tb3+/Li+ | Combustion | 37 | 254 | Green | [ |
| 2022 | BiOCl∶Tb3+ | Combustion | 37 | 365 | Green | [ |
| 2022 | LaNb2VO9∶Dy3+ | Solid-Phase | 30 | 307 | Yellow | [ |
| 2022 | LaNb2VO9∶Sm3+ | Solid-Phase | 39 | 308 | Orange-red | [ |
| 2023 | ZAO∶5Co2+ | Combustion | 22 | 320 | Blue | [ |
| 2023 | BaSrY4O8∶Eu3+ | Combustion | 19 | 365/395 | Red or purple | [ |
| 2023 | Sr9Al6O18∶Er3+ | Combustion | 29 | 378 | Green | [ |
| 2023 | GdCaAl3O7∶Eu3+ | Combustion | 37 | 375 | Orange-red | [ |
| 2023 | Sr6Al4Y2O15∶Er3+ | Combustion | 23 | 375 | Green | [ |
| 2024 | Sr9Al6O18∶Dy3+ | Combustion | 37 | 350 | White | [ |
| 2024 | Sr2MgSi2O7∶Fe3+ | Combustion | 53 | 345 | Orange-red | [ |
| 2024 | BiOCl∶Sm3+ | Solid-Phase | 21 | 408 | Orange-red | [ |
Fig.13 Visual detection effect of lip print on glass substrates with different powders: (A) Indigo natural pigment at the micrometer level[33]; (B) Lorraine flower synthesizes pigments at the micrometer level[37]; (C) LaOF∶Sm3+ down conversion luminescence nano powder[44]
| 1 | NEWTON M. The encyclopedia of crime scene investigation[M]. New York: Infobase Publishing, 2010. |
| 2 | SUZUKI K, TSUCHIAHASHI Y. A new attempt of personal identification by means of lip print[J]. Canadian Soc Forensic Sci J, 1971, 4(4): 154-158. |
| 3 | TSUCHIHASHI Y. Studies on personal identification by means of lip prints[J]. Forensic Sci, 1974, 3: 233-248. |
| 4 | KASPRZAK J. Possibilities of cheiloscopy[J]. Forensic Sci Int, 1990, 46(1/2): 145-151. |
| 5 | BÉCUE A, CHAMPOD C. Fingermarks and other body impressions-a review (July 2013-July 2016)[C]//18th Interpol forensic science symposium, Lyon (France). 2016. |
| 6 | KASPRZAK J, FONSECA G M. Lip print evidence: Poland as the last bastion of practical cheiloscopy[J]. Forensic Sci Rev, 2024, 36: 55-70. |
| 7 | FRANCO A, LIMA L K G, OLIVEIRA M N, et al. The weak evidence of lip print analysis for sexual dimorphism in forensic dentistry: a systematic literature review and meta-analysis[J]. Sci Rep, 2021, 11(1): 24192. |
| 8 | BUZEA C, PACHECO I I, ROBBIE K. Nanomaterials and nanoparticles: sources and toxicity[J]. Biointerphases, 2007, 2(4): 17-71. |
| 9 | BECUE A, CHAMPOD C, MARGOT P. Use of gold nanoparticles as molecular intermediates for the detection of fingermarks[J]. Forensic Sci, 2007, 168(2/3): 169-176. |
| 10 | MAO Y, GUPTA S K. Metal oxide nanomaterials: from fundamentals to applications[J]. Nanomaterials, 2022, 12(23): 4340. |
| 11 | BAZHUKOVA I N, PUSTOVAROV V A, MYSHKINA A V, et al. Luminescent nanomaterials doped with rare earth ions and prospects for their biomedical applications (a review)[J]. Opt Spectrosc, 2020, 128: 2050-2068. |
| 12 | ZHANG S, ZHANG L, HUANG L, et al. Study on the fluorescence properties of carbon dots prepared via combustion process[J]. J Lumin, 2019, 206: 608-612. |
| 13 | SAKAMOTO R, FUKUI N, MAEDA H, et al. Layered metal-organic frameworks and metal-organic nanosheets as functional materials[J]. Coordination Chem Rev, 2022, 472: 214787. |
| 14 | BAI J, QIN F, HE P, et al. Carbon dots-based luminescent materials with aggregation-induced emission and solvent crystallization-induced emission behaviors[J]. Inorg Chem Commun, 2023, 151: 110614. |
| 15 | KUMAR I, KUMAR S, SINGH M, et al. Application of nanotechnology in forensic DNA and help to investigations on the crime scene analysis[J]. World J Pharm Res, 2016, 5(1): 266-276. |
| 16 | KUMAR P. Cheiloscopy: efficacy of flouroscent dye over lysochrome dye in developing invisible lip prints[J]. Int J Contemp Dentistry, 2010, 1(3): 1-3. |
| 17 | SABARINATH B, SIVAPATHASUNDHARAM B, VASANTHAKUMAR V. Plasma cell granuloma of lip[J]. Dental Res, 2012, 23(1): 101-103. |
| 18 | YANG J C, RAJ J. Postmortem identification in forensic odontology[J]. Int J Forensic Odontol, 2017, 2: 27. |
| 19 | CASTELLÓ A, ALVAREZ-SEGUÍ M, VERDÚ F. Luminous lip-prints as criminal evidence[J]. Forensic Sci Int, 2005, 155(2/3): 185-187. |
| 20 | PETER T, CHATRA L, SHENAI P, et al. The phoenix risescheiloscopy[J]. WJPR, 2014, 2(6): 2089-2098. |
| 21 | TSUCHIHASHI Y. Studies on personal identification by means of lip prints[J]. Forensic Sci, 1974, 3: 233-248. |
| 22 | KASPRZAK J. Cheiloskopia kryminalistyczna[M]. Częstochowa: Wydawnictwo Biura Techniki Kryminalistycznej KGP, 1991: 247-253. |
| 23 | LUDWIG A, PAGE H. An investigation into the dynamics of lip-prints as a means of identification[J]. Forensic Sci, 2012, 44(2): 169-181. |
| 24 | KAUR J, THAKAR M K. New individual features in lip prints-a potential support for personal identification[J]. Forensic Sci J, 2023, 56(1): 1-22. |
| 25 | WEI T, HAN J C, WANG L, et al. Magnetic perovskite nanoparticles for latent fingerprint detection[J]. Nanoscale, 2021, 13(27): 12038-12044. |
| 26 | JIN X D, WANG H, XIN R, et al. An aggregation-induced emission luminogen combined with a cyanoacrylate fuming method for latent fingerprint analysis[J]. Analyst, 2020, 145 (6): 2311-2318. |
| 27 | DUAN L X, ZHENG Q S, TU T. Instantaneous high-resolution visual imaging of latent fingerprints in water using color-tunable AIE pincer complexes[J]. Adv Mater, 2022, 34(35): e2202540. |
| 28 | CROXTON R, KENT T, LITTLEWOOD A, et al. An evaluation of inkjet printed amino acid fingerprint test targets for ninhydrin process monitoring-and some observations[J]. Forensic Sci Int, 2021, 321: 110741. |
| 29 | WANG Y Q, LYU S S, LUO J L, et al. Copper vertical micro dendrite fin arrays and their superior boiling heat transfer capability[J]. Appl Surface Sci, 2017, 422: 388-393. |
| 30 | SEGUÍ M A, FEUCHT M M, PONCE A C, et al. Persistent lipsticks and their lip prints: new hidden evidence at the crime scene[J]. Forensic Sci Int, 2000, 112(1): 41-47. |
| 31 | CASTELLÓ A, ALVAREZ-SEGUÍ M, VERDÚ F. Use of fluorescent dyes for developing latent lip prints[J]. Colorati Technol, 2004, 120(4): 184-187. |
| 32 | SINGH N N, BRAVE V R, KHANNA S. Natural dyes versus lysochrome dyes in cheiloscopy: a comparative evaluation[J]. J Forensic Dental Sci, 2010, 2(1): 11-17. |
| 33 | NAVARRO E, CASTELLÓ A, LÓPEZ-ALFARO J A, et al. More about the developing of invisible lipstick-contaminated lipmarks on human skin: the usefulness of fluorescent dyes[J]. J Forensic Legal Med, 2007, 14(6): 340-342. |
| 34 | AHMAD M B, SOOMRO U, MUQEET M, et al. Adsorption of indigo carmine dye onto the surface-modified adsorbent prepared from municipal waste and simulation using deep neural network[J]. J Hazard Mater, 2021, 408: 124433. |
| 35 | VERGHESE R, KHATOON H, RENUGA S, et al. Comparing the efficacy of fullers earth, indigo blue and vermillion in developing latent lip prints[J]. Forensic Med Toxicol, 2022, 22: 137-141. |
| 36 | KIRKBRIDE K P, LINACRE A. Detection of cellular material in lip-prints[J]. Forensic Sci, Med Pathol, 2019, 15: 362-368. |
| 37 | MEBUATHONG T, KANGSANAN W, CHINGTHONGKHAM P, et al. Vaseline treatment combined with a natural dye extract to enhance lip print contrast images[J]. Coloration Technol, 2021, 137(4): 361-367. |
| 38 | FONSECA G M, BONFIGLI E, CANTÍN M. Experimental model of developing and analysis of lip prints in atypical surface: a metallic straw[J]. J Forensic Dental Sci, 2014, 6(2): 126-131. |
| 39 | MORENO S, BROWN G, KLEIN M, et al. Chemical composition effect on latent print development using black fingerprint powders[J]. Forensic Chem, 2021, 26: 100366. |
| 40 | LI H, GUO X, LIU J, et al. A synthesis of fluorescent starch based on carbon nanoparticles for fingerprints detection[J]. Opt Mater, 2016, 60: 404-410. |
| 41 | 李聃, 孔垂龙, 胡博, 等. 磷光碳纳米粉的制备及其在潜手印无荧光干扰显现中的应用[J/OL]. 化工进展, 1-11[2024-10-24]. |
| LI D, KONG C L, HU B, et al, Synthesis of phosphorescent carbon nanoparticles powder and its application in the non-fluorescent interference development of latent fingerprints[J/OL]. Chem Ind Eng Prog, 1-11[2024-10-24]. | |
| 42 | ZHANG X, LIU X, LIU P, et al. Ultralong afterglow of heavy-atom-free carbon dots with a phosphorescence lifetime of up to 3.7 s for encryption and fingerprinting description[J]. Dalton Transact, 2024, 53(10): 4671-4679. |
| 43 | DHANALAKSHMI M, NAGABHUSHANA H, DARSHAN G P, et al. Sonochemically assisted hollow/solid BaTiO3∶Dy3+ microspheres and their applications in effective detection of latent fingerprints and lip prints[J]. J Sci: Adv Mater Dev, 2017, 2(1): 22-33. |
| 44 | SURESH C, NAGABHUSHANA H, DARSHAN G P, et al. Facile LaOF∶Sm3+ based labeling agent and their applications in residue chemistry of latent fingerprint and cheiloscopy under UV-visible light[J]. Arab J Chem, 2018, 11(4): 460-482. |
| 45 | SHARMA V, DAS A, KUMAR V, et al. Combustion synthesis and characterization of blue long lasting phosphor CaAl2O4∶Eu2+,Dy3+ and its novel application in latent fingerprint and lip mark detection[J]. Phys B: Condensed Matter, 2018, 535: 149-156. |
| 46 | LATHA N, VIDYA Y S, SHARMA S C, et al. Effect of Li+ coodoping on the photoluminescence of novel green emitting BiOCl∶Tb3+ nanophosphors for display, visualization of latent fingerprints and anticounterfeiting applications[J]. J Solid State Chem, 2020, 290: 121418. |
| 47 | LATHA N, LAVANYA D R, DARSHAN G P, et al. Green emanating BiOCl∶Tb3+ phosphors for strategic development of dermatoglyphics and anti-counterfeiting applications[J]. Inorg Chem Communs, 2022, 138: 109266. |
| 48 | SREEDHARA R, KRUSHNA B R R, PRASAD B D, et al. A cost-effective intense blue colour cobalt doped gahnite pigment for latent finger print, cheiloscopy and anti-counterfeiting applications[J]. Colloids Surf A: Physicochem Eng Aspects, 2023, 663: 131038. |
| 49 | KRUSHNA B R R, RAJASHEKHARAIAH A S, DARSHAN G P, et al. Desired highly efficient Eu3+ activated GdCaAl3O7 orange-red emanating nanophosphors for UV excitable forensic and advanced information encryption and decryption applications[J]. J Photochem Photobiol A: Chem, 2023, 444: 114880. |
| 50 | GAGANA M, KRUSHNA B R R, SHARMA S C, et al. Exploring innovative applications of Sr2MgSi2O7∶Fe3+ luminescent system in surface-triggered fingerprint divergence and Cheiloscopy screening[J]. Mater Today Sustain, 2024, 26: 100788. |
| 51 | NAVYA N, KRUSHNA B R R, SHARMA S C, et al. Highly efficient Dy3+ activated Sr9Al6O18 nanophosphors for W-LEDs, optical thermometry and deep learning-based intelligent system for personal identification applications[J]. Inorg Chem Commun, 2024, 169: 113138. |
| 52 | MAMATHA G R, KRUSHNA B R R, PRASAD B D, et al. Novel green emanating Sr6Al4Y2O15∶Er3+ nanophosphor for thermal sensing, data security and personal identification[J]. Microchem J, 2023, 193: 109184. |
| 53 | LI S, GUO J, SHI W, et al. Synthesis and characterization of wide band excited yellow phosphor LaNb2VO9∶Dy3+ and application in potential fingerprint and lip print detection[J]. J Lumin, 2022, 244: 118681. |
| 54 | GUO J, GUO J, GAO J, et al. A novel broadband-excited LaNb2VO9∶Sm3+ orange-red-emitting phosphor with zero-thermal-quenching behavior for WLEDs and personal identification[J]. Ceram Int, 2022, 48(18): 26992-27002. |
| 55 | DARSHAN C, ARJUN A, PREMKUMAR H B, et al. Tailoring robust luminescent-based BaSrY4O8∶Eu3+ platform opens new avenues for screening diverge surface prompted cheiloscopy, WLED's, and dosimetric applications[J]. Mater Today Sustain, 2023, 24: 100594. |
| 56 | SWATHI B N, KRUSHNA B R R, HARIPRASAD S A, et al. Designing vivid green Sr9Al6O18∶Er3+ phosphor for information encryption and NUV excitable cool-white LED applications[J]. J Lumin, 2023, 257: 119618. |
| 57 | SOLOMON A S, JACOB R M, SHEREEF A, et al. Multifunctional BiOCl∶Sm3+ nanophosphors: a luminescent platform for solid-state lighting applications, optical thermometry, photocatalytic and forensic applications[J]. Ceram Int, 2024, 50(24): 54348-54370. |
| 58 | HUMPHREYS J D, PORTER G, BELL M. The quantification of fingerprint quality using a relative contrast index[J]. Forensic Sci Int, 2008, 178(1): 46-53. |
| 59 | VANDERWEE J, PORTER G, RENSHAW A, et al. The investigation of a relative contrast index model for fingerprint quantification[J]. Forensic Sci Int, 2011, 204(1/2/3): 74-79. |
| 60 | MATUSZEWSKI S, SZAFAŁOWICZ M. A simple computer‐assisted quantification of contrast in a fingerprint[J]. J Forensic Sci, 2013, 58(5): 1310-1313. |
| 61 | 沈敦璞, 李明, 袁传军, 等. 基于荧光光谱方法计算手印显现对比度的研究[J]. 光谱学与光谱分析, 2020, 40(1): 91-97. |
| SHEN D P, LI M, YUAN C J, et al. Research on calculating the contrast of handprint appearance based on fluorescence spectroscopy method[J]. Spectrosc Spectral Anal, 2020, 40(1): 91-97. | |
| 62 | WROBEL K, DOROZ R, PORWIK P, et al. Personal identification utilizing lip print furrow based patterns. a new approach[J]. Pattern Recognit, 2018, 81: 585-600. |
| 63 | SHARMA V, DAS A, KUMAR V, et al. Combustion synthesis and characterization of blue long lasting phosphor CaAl2O4∶Eu2+, Dy3+ and its novel application in latent fingerprint and lip mark detection[J]. Phys B: Condensed Matter, 2018, 535: 149-156. |
| 64 | CHEN G, QIU H, PRASAD P N, et al. Upconversion nanoparticles: design, nanochemistry, and applications in theranostics[J]. Chem Rev, 2014, 114(10): 5161-5214. |
| [1] | Liang XIONG, Bing-Yang GAO, Cong LIU, Dong-Ming YIN, Zhen-Hua ZHANG, Zhi-Ya HAN, Nan DING, Yong CHENG, Li-Min WANG. Research Progress in Nanoscale Magnesium-Based Hydrogen Storage Materials [J]. Chinese Journal of Applied Chemistry, 2025, 42(3): 293-312. |
| [2] | Nian JIN, Chun-Li GAO, Quan-Qian GE, Mai XU, Xian LIANG, Chuan-Gao ZHU, Feng-Wu WANG. Research Progress on the Construction of Defective Titanium Dioxide and Its Application in Photocatalysis/Photoelectrocatalysis [J]. Chinese Journal of Applied Chemistry, 2025, 42(2): 149-167. |
| [3] | Yi-Qian YANG, Xiao-Xia YAN, Hao PENG, Ai-Guo WU, Fang YANG. Advances of NIR-Ⅱ-Triggered Photodynamic Therapy in Overcoming Tumor Hypoxia Environment [J]. Chinese Journal of Applied Chemistry, 2024, 41(7): 925-936. |
| [4] | Ying-Wei LI, Ji HAN, Bu-Yuan GUAN. Research Progress on the Synthesis and Application of Two-Dimensional Mesoporous Materials [J]. Chinese Journal of Applied Chemistry, 2024, 41(6): 767-782. |
| [5] | Kong-Hao PENG, An-Qi BAI, Ying MENG, Hui YIN, Xin-Yao SU, Jin-Yu YANG, Shu-Rong LI, Ling-Yan ZHANG, Li-Xia LUO, Pei-Jun MENG. Research Progress of Nanomaterial Sensors in the Detection of Organophosphorus Pesticide Residues [J]. Chinese Journal of Applied Chemistry, 2024, 41(4): 472-483. |
| [6] | Hui-Hui LI, Kai-Sheng YAO, Ya-Nan ZHAO, Li-Na FAN, Yu-Lin TIAN, Wei-Wei LU. Ionic Liquid-Modulated Synthesis of Pt-Pd Bimetallic Nanomaterials and Their Catalytic Performance for Ammonia Borane Hydrolysis to Generate Hydrogen [J]. Chinese Journal of Applied Chemistry, 2023, 40(4): 597-609. |
| [7] | Xiao-Hu LIU, Xiao-Juan LAI, Hong-Yan CAO, Ting-Ting WANG, Zhi-Qiang DANG. Synergistic Performance of Foaming Agent/Stabilizer/SiO2 Composite Foam Retarded Acid System [J]. Chinese Journal of Applied Chemistry, 2023, 40(1): 91-99. |
| [8] | Hui DU, Chen-Yang YAO, Hao PENG, Bo JIANG, Shun-Xiang LI, Jun-Lie YAO, Fang ZHENG, Fang YANG, Ai-Guo WU. Applications of Transition Metal⁃doped Iron⁃based Nanoparticles in Biomedicine [J]. Chinese Journal of Applied Chemistry, 2022, 39(3): 391-406. |
| [9] | HUANG Xiao-Tong, CHEN Ying-Xin, ZHU Ze-Bin, ZHOU Li-Hua. Research Progress on Detection of Ascorbic Acid by Nanomaterial-Based Spectral Analysis Method [J]. Chinese Journal of Applied Chemistry, 2021, 38(6): 637-650. |
| [10] | LIU Jiao, ZOU Peng-Fei, LI Ping, ZHANG Xiao, WANG Xin-Xin, GAO Yuan-Yuan, LI Li-Li. Research Progress of the Peptide-Based Self-assembled Nanomaterials Against Microbial Resistance [J]. Chinese Journal of Applied Chemistry, 2021, 38(5): 546-558. |
| [11] | LIU Lin-Chang, GUO Ya-Jun, ZHU Hong-Lin, MA Jing-Jing, LI Zhong-Yi, SHUI Miao, ZHENG Yue-Qing. Research Progress on Supported Ultrafine Nano-catalysts for Hydrolytic Dehydrogenation of Ammonia Borane [J]. Chinese Journal of Applied Chemistry, 2021, 38(11): 1405-1422. |
| [12] | MENG Yang, YANG Chan, PENG Juan. Progress in Iron, Cobalt and Nickel-Based Metal Phosphide Nano-catalysts for Hydrogen Production under Alkaline Conditions [J]. Chinese Journal of Applied Chemistry, 2020, 37(7): 733-745. |
| [13] | FAN Zhe,ZHANG Shengsheng,TANG Jiahao,FAN Ping. Structure, Preparation and Application of Graded Nanomaterials [J]. Chinese Journal of Applied Chemistry, 2020, 37(5): 489-501. |
| [14] | WANG Chunli,SUN Lianshan,ZHONG Ming,WANG Limin,CHENG Yong. Research Progress of Transition Metal and Compounds for Lithium-Sulfur Batteries [J]. Chinese Journal of Applied Chemistry, 2020, 37(4): 387-404. |
| [15] | WANG Qiushi, HE Junhui. Synthesis of Magnetic CuS Composite Nanomaterial and Its Specific Adsorption of Hg(II) in Water [J]. Chinese Journal of Applied Chemistry, 2020, 37(11): 1316-1323. |
| Viewed | ||||||
|
Full text |
|
|||||
|
Abstract |
|
|||||