Chinese Journal of Applied Chemistry ›› 2020, Vol. 37 ›› Issue (7): 733-745.DOI: 10.11944/j.issn.1000-0518.2020.07.200058
• Review • Previous Articles Next Articles
MENG Yang, YANG Chan, PENG Juan*
Received:
2020-03-03
Published:
2020-07-01
Online:
2020-07-07
Contact:
PENG Juan, associate professor; Tel:0951-2062004; E-mail:pengjuan@nxu.edu.cn; Research interests:electrocatalysis
Supported by:
MENG Yang, YANG Chan, PENG Juan. Progress in Iron, Cobalt and Nickel-Based Metal Phosphide Nano-catalysts for Hydrogen Production under Alkaline Conditions[J]. Chinese Journal of Applied Chemistry, 2020, 37(7): 733-745.
Add to citation manager EndNote|Ris|BibTeX
URL: http://yyhx.ciac.jl.cn/EN/10.11944/j.issn.1000-0518.2020.07.200058
[1] Dai D,Wei B,Li Y,et al. Self-supported Hierarchical Fe(PO3)2@Cu3P Nanotube Arrays for Efficient Hydrogen Evolution in Alkaline Media[J]. J Alloys Comp,2020,820(2):258-266. [2] Esmailzadeh S,Shahrabi T,Darband G B,et al. Pulse Electrodeposition of Nickel Selenide Nanostructure as a Binder-Free and High-Efficient Catalyst for both Electrocatalytic Hydrogen and Oxygen Evolution Reactions in Alkaline Solution[J]. Electrochim Acta,2020,334(5):131-140. [3] Liu H,Qian X,Niu Y,et al. Hierarchical Ni-MoSex@CoSe2 Core-Shell Nanosphere as Highly Active Bifunctional Catalyst for Efficient Dye-Sensitized Solar Cell and Alkaline Hydrogen Evolution[J]. Chem Eng J,2020,383(27):427-436. [4] Cheng H E,Li W L,Yang Z P. Enhancement of Hydrogen Evolution Reaction by Pt Nanopillar-Array Electrode in Alkaline Media and the Effect of Nanopillar Length on the Electrode Efficiency[J]. Int J Hydrogen Energy,2019,44(57):30141-30150. [5] Kim J,Kim H,Lee W J,et al. Theoretical and Experimental Understanding of Hydrogen Evolution Reaction Kinetics in Alkaline Electrolytes with Pt-Based Core-Shell Nanocrystals[J]. J Am Chem Soc,2019,141(45):18256-18263. [6] Wang X,Liu R,Zhang Y,et al. Hierarchical Ni3S2-NiOOH Hetero-Nanocomposite Grown on Nickel Foam as a Noble-Metal-Free Electrocatalyst for Hydrogen Evolution Reaction in Alkaline Electrolyte[J]. Appl Surf Sci,2018,456(5):164-173. [7] Zhang L,Cong M,Wang Y,et al. V4P6.98/VO(PO3)2 as an Efficient Non-noble Metal Catalyst for Electrochemical Hydrogen Evolution in Alkaline Electrolyte[J]. ChemElectroChem,2019,6(5):1329-1332. [8] Zhang Y,Wang Y,Han C,et al. Tungsten-Coated Nano-Boron Carbide as a Non-noble Metal Bifunctional Electrocatalyst for Oxygen Evolution and Hydrogen Evolution Reactions in Alkaline Media[J]. Nanoscale,2017,9(48):19176-19182. [9] Cai J,Song Y,Zang Y,et al. N-Induced Lattice Contraction Generally Boosts the Hydrogen Evolution Catalysis of P-Rich Metal Phosphides[J]. Sci Adv,2020,6(1):28252-28261. [10] PAN Zhiyu. Research Progress of Transition Metal-Based Electrocatalytic Hydrogen Evolution Materials[J]. Mod Chem Res,2019,2(1841):143-144(in Chinese). 潘致宇. 过渡金属基电催化析氢材料的研究进展[J]. 当代化工研究,2019,2(1841):143-144. [11] Yu H,Li J,Gao G,et al. Metal-Organic Frameworks Derived Carbon-Incorporated Cobalt/Dicobalt Phosphide Microspheres as Mott-Schottky Electrocatalyst for Efficient and Stable Hydrogen Evolution Reaction in Wide-pH Environment[J]. J Colloid Interface Sci,2020,565(23):513-522. [12] Du H,Kong R M,Guo X,et al. Recent Progress in Transition Metal Phosphides with Enhanced Electrocatalysis for Hydrogen Evolution[J]. Nanoscale,2018,10(46):21617-21624. [13] Lv Y,Wang X. Nonprecious Metal Phosphides as Catalysts for Hydrogen Evolution, Oxygen Reduction and Evolution Reactions[J]. Catal Sci Technol,2017,7(17):3676-3691. [14] Callejas J F,Read C G,Roske C W,et al. Synthesis, Characterization, and Properties of Metal Phosphide Catalysts for the Hydrogen-Evolution Reaction[J]. Chem Mater,2016,28(17):6017-6044. [15] Jiang P,Liu Q,Sun X. NiP2 Nanosheet Arrays Supported on Carbon Cloth:An Efficient 3D Hydrogen Evolution Cathode in both Acidic and Alkaline Solutions[J]. Nanoscale,2014,6(22):13440-13445. [16] Zhang Y,Wang Y,Wang T,et al. Heterostructure of 2D CoP Nanosheets/1D Carbon Nanotubes to Significantly Boost the Alkaline Hydrogen Evolution[J]. Adv Mater Interfaces,2020,7(2):2571-2579. [17] CHEN Yaqiong,ZHANG Jinfeng,WAN Lei,et al. Effect of Nickel Phosphide Nanoparticles Crystallization on Hydrogen Evolution Reaction Catalytic Performance[J]. Trans Nonferrous Met Soc China,2017,27(2):369-376(in Chinese). 陈亚琼,张金凤,万磊,等. 镍磷纳米颗粒的晶化对其催化析氢性能的影响[J]. 中国有色金属学报,2017,27(2):369-376. [18] Zhang S,Xiong T,Tang X,et al. Engineering Inner-Porous Cobalt Phosphide Nanowire Based on Controllable Phosphating for Efficient Hydrogen Evolution in Both Acidic and Alkaline Conditions[J]. Appl Surf Sci,2019,481(15):1524-1531. [19] McEnaney J M,Crompton J C,Callejas J F,et al. Amorphous Molybdenum Phosphide Nanoparticles for Electrocatalytic Hydrogen Evolution[J]. Chem Mater,2014,26(16):4826-4831. [20] Popczun E J,McKone J R,Read C G,et al. Nanostructured Nickel Phosphide as an Electrocatalyst for the Hydrogen Evolution Reaction[J]. J Am Chem Soc,2013,135(25):9267-9270. [21] Xing Z,Liu Q,Asiri A M,et al. Closely Interconnected Network of Molybdenum Phosphide Nanoparticles:A Highly Efficient Electrocatalyst for Generating Hydrogen from Water[J]. Adv Mater,2014,26(32):5702-5710. [22] Feng Y,Yu X Y,Paik U. Nickel Cobalt Phosphides Quasi-Hollow Nanocubes as an Efficient Electrocatalyst for Hydrogen Evolution in Alkaline Solution[J]. Chem Commun,2016,52(8):1633-1636. [23] Li X,Liu W,Zhang M,et al. Strong Metal-Phosphide Interactions in Core-Shell Geometry for Enhanced Electrocatalysis[J]. Nano Lett,2017,17(3):2057-2063. [24] Liu Q,Tian J,Cui W,et al. Carbon Nanotubes Decorated with CoP Nanocrystals:A Highly Active Non-Noble-Metal Nanohybrid Electrocatalyst for Hydrogen Evolution[J]. Angew Chem Int Edit,2014,53(26):6710-6714. [25] Wang X D,Cao Y,Teng Y,et al. Large-Area Synthesis of a Ni2P Honeycomb Electrode for Highly Efficient Water Splitting[J]. ACS Appl Mater Interfaces,2017,9(38):32812-32819. [26] Jiang N,You B,Sheng M,et al. Electrodeposited Cobalt-Phosphorous-Derived Films as Competent Bifunctional Catalysts for Overall Water Splitting[J]. Angew Chem Int Edit,2015,54(21):6251-6254. [27] Liu Q,Gu S,Li C M. Electrodeposition of Nickel-Phosphorus Nanoparticles Film as a Janus Electrocatalyst for Electro-Splitting of Water[J]. J Power Sources,2015,299(3):342-353. [28] Han S, Feng Y,Zhang F,et al. Metal-Phosphide-Containing Porous Carbons Derived from an Ionic-Polymer Framework and Applied as Highly Efficient Electrochemical Catalysts for Water Splitting[J]. Adv Funct Mater,2015,25(25):3899-3906. [29] Jiang D,Xu Y,Yang R,et al. CoP3/CoMoP Heterogeneous Nanosheet Arrays as Robust Electrocatalyst for pH-Universal Hydrogen Evolution Reaction[J]. ACS Sustainable Chem Eng,2019,7(10):9309-9317. [30] Li H,Li Q,Wen P,et al. Colloidal Cobalt Phosphide Nanocrystals as Trifunctional Electrocatalysts for Overall Water Splitting Powered by a Zinc-Air Battery[J]. Adv Mater,2018,30(9):1538-1547. [31] Liu P,Rodriguez J A. Catalysts for Hydrogen Evolution from the NiFe Hydrogenase to the Ni2P (001) Surface:The Importance of Ensemble Effect[J]. J Am Chem Soc,2005,127(42):14871-14878. [32] McCrory C C L,Jung S,Ferrer I M,et al. Benchmarking Hydrogen Evolving Reaction and Oxygen Evolving Reaction Electrocatalysts for Solar Water Splitting Devices[J]. J Am Chem Soc,2015,137(13):4347-4357. [33] McKone J R,Marinescu S C,Brunschwig B S,et al. Earth-Abundant Hydrogen Evolution Electrocatalysts[J]. Chem Sci,2014,5(3):865-878. [34] Zhang Y,Liu Y,Ma M,et al. A Mn-Doped Ni2P Nanosheet Array:An Efficient and Durable Hydrogen Evolution Reaction Electrocatalyst in Alkaline Media[J]. Chem Commun,2017,53(80):11048-11051. [35] Zhang Z,Jiang Y,Zheng X,et al. Electrodepositing Ultra-Thin Ni(OH)2 Amorphous Film on Ni2P Nanosheets Array:An Efficient Strategy Toward Greatly Enhanced Alkaline Hydrogen Evolution Reaction[J]. New J Chem,2018,42(14):11285-11288. [36] Senevirathne K,Burns A W,Bussell M E,et al. Synthesis and Characterization of Discrete Nickel Phosphide Nanoparticles:Effect of Surface Ligation Chemistry on Catalytic Hydrodesulfurization of Thiophene[J]. Adv Funct Mater,2007,17(18):3933-3939. [37] Feng L,Vrubel H,Bensimon M,et al. Easily-Prepared Dinickel Phosphide(Ni2P) Nanoparticles as an Efficient and Robust Electrocatalyst for Hydrogen Evolution[J]. Phys Chem Chem Phys,2014,16(13):5917-5921. [38] Yan Q,Chen X,Wei T,et al. Hierarchical Edge-Rich Nickel Phosphide Nanosheet Arrays as Efficient Electrocatalysts Toward Hydrogen Evolution in both Alkaline and Acidic Conditions[J]. ACS Sustainable Chem Eng,2019,7(8):7804-7811. [39] Zhang L,Ren X,Guo X,et al. Efficient Hydrogen Evolution Electrocatalysis at Alkaline pH by Interface Engineering of Ni2P-CeO2[J]. Inorg Chem,2018,57(2):548-552. [40] Yang F,Kang N,Yan J,et al. Hydrogen Evolution Reaction Property of Molybdenum Disulfide/Nickel Phosphide Hybrids in Alkaline Solution[J]. Metals,2018,8(5):3521-3530. [41] Du H,Xia L,Zhu S,et al. Al-Doped Ni2P Nanosheet Array:A Superior and Durable Electrocatalyst for Alkaline Hydrogen Evolution[J]. Chem Commun,2018,54(23):2894-2897. [42] Mu J,Li J,Yang E C,et al. Three-Dimensional Hierarchical Nickel Cobalt Phosphide Nanoflowers as an Efficient Electrocatalyst for the Hydrogen Evolution Reaction under Both Acidic and Alkaline Conditions[J]. ACS Appl Energy Mater,2018,1(8):3742-3751. [43] Liang D,Jiang H,Xu Q,et al. Modulating the Volmer Step by MOF Derivatives Assembled with Heterogeneous Ni2P-CoP Nanocrystals in Alkaline Hydrogen Evolution Reaction[J]. J Electrochem Soc,2018,165(16):1286-1291. [44] Liu C,Gong T,Zhang J,et al. Engineering Ni2P-NiSe2 Heterostructure Interface for Highly Efficient Alkaline Hydrogen Evolution[J]. Appl Catal B-Environ,2020,262(27):13251-13259. [45] Laursen A B,Patraju K R,Whitaker M J,et al. Nanocrystalline Ni5P4:A Hydrogen Evolution Electrocatalyst of Exceptional Efficiency in both Alkaline and Acidic Media[J]. Energy Environ Sci,2015,8(3):1027-1034. [46] Yang F, Huang S, Zhang B,et al. Facile Synthesis of Well-Dispersed Ni2P on N-Doped Nanomesh Carbon Matrix as a High-Efficiency Electrocatalyst for Alkaline Hydrogen Evolution Reaction[J]. Nanomaterials,2019,9(7):43251-43260. [47] Wang X,Kolen′ko Y V,Liu L. Direct Solvothermal Phosphorization of Nickel Foam to Fabricate Integrated Ni2P-Nanorods/Ni Electrodes for Efficient Electrocatalytic Hydrogen Evolution[J]. Chem Commun,2015,51(31):6738-6741. [48] Ma Z,Li R,Wang M,et al. Self-supported Porous Ni-Fe-P Composite as an Efficient Electrocatalyst for Hydrogen Evolution Reaction in Both Acidic and Alkaline Medium[J]. Electrochim Acta,2016,219(17):194-203. [49] Read C G,Callejas J F,Holder C F,et al. General Strategy for the Synthesis of Transition Metal Phosphide Films for Electrocatalytic Hydrogen and Oxygen Evolution[J]. ACS Appl Mater Interfaces,2016,8(20):12798-12803. [50] Jin X,Li J,Cui Y,et al. Cu3P-Ni2P Hybrid Hexagonal Nanosheet Arrays for Efficient Hydrogen Evolution Reaction in Alkaline Solution[J]. Inorg Chem,2019,58(17):11630-11635. [51] Ledendecker M,Calderon S K,Papp C,et al. The Synthesis of Nanostructured Ni5P4 Films and Their Use as a Non-noble Bifunctional Electrocatalyst for Full Water Splitting[J]. Angew Chem Int Edit,2015,54(42):12361-12365. [52] Wan L,Zhang J F,Chen Y Q,et al. Varied Hydrogen Evolution Reaction Properties of Nickel Phosphide Nanoparticles with Different Compositions in Acidic and Alkaline Conditions[J]. J Mater Sci,2017,52(2):804-814. [53] Pan Y,Liu Y,Zhao J,et al. Monodispersed Nickel Phosphide Nanocrystals with Different Phases:Synthesis, Characterization and Electrocatalytic Properties for Hydrogen Evolution[J]. J Mater Chem A,2015,3(4):1656-1665. [54] Pan Y,Lin Y,Chen Y,et al. Cobalt Phosphide-Based Electrocatalysts:Synthesis and Phase Catalytic Activity Comparison for Hydrogen Evolution[J]. J Mater Chem A,2016,4(13):4745-4754. [55] Wei M,Yang L,Wang L,et al. In-Situ Potentiostatic Activation to Optimize Electrodeposited Cobalt-Phosphide Electrocatalyst for Highly Efficient Hydrogen Evolution in Alkaline Media[J]. Chem Phys Lett,2017,681(9):92-104. [56] Sobhani A,Salavati-Niasari M. Synthesis of Co2P/Co Nanocomposites Using Single Source Precursor by Thermal Decomposition Method[J]. J Mater Sci-Mater Electron,2016,27(4):3271-3280. [57] Xu K,Ding H,Zhang M,et al. Regulating Water-Reduction Kinetics in Cobalt Phosphide for Enhancing HER Catalytic Activity in Alkaline Solution[J]. Adv Mater,2017,29(28):1470-1481. [58] Hei P,Shu C,Hou Z,et al. Iron Doped CoP Nanowires on Carbon Cloth:An Efficient and Stable Electrocatalyst for Li-O2 Battery[J]. J Alloy Compd,2020,820(23):1325-1334. [59] Zhang R,Wang X,Yu S,et al. Ternary NiCo2Px Nanowires as pH-Universal Electrocatalysts for Highly Efficient Hydrogen Evolution Reaction[J]. Adv Mater,2017,29(9):2586-2594. [60] Xu K,Cheng H,Liu L,et al. Promoting Active Species Generation by Electrochemical Activation in Alkaline Media for Efficient Electrocatalytic Oxygen Evolution in Neutral Media[J]. Nano Lett,2017,17(1):578-583. [61] Li W,Zhang S,Fan Q,et al. Hierarchically Scaffolded CoP/CoP2 Nanoparticles: Controllable Synthesis and Their Application as a Well-Matched Bifunctional Electrocatalyst for Overall Water Splitting[J]. Nanoscale,2017,9(17):5677-5685. [62] Zhang L,Ding X,Cong M,et al. Self-adaptive Amorphous Co2P@Co2P/Co Polyoxometalate/Nickel Foam as an Effective Electrode for Electrocatalytic Water Splitting in Alkaline Electrolyte[J]. Int J Hydrogen Energy,2019,44(18):9203-9209. [63] Popczun E J,Read C G,Roske C W,et al. Highly Active Electrocatalysis of the Hydrogen Evolution Reaction by Cobalt Phosphide Nanoparticles[J]. Angew Chem Int Edit,2014,53(21):5427-5430. [64] Han Y,Li P,Tian Z,et al. Molybdenum-Doped Porous Cobalt Phosphide Nanosheets for Efficient Alkaline Hydrogen Evolution[J]. ACS Appl Energy Mater,2019,2(9):6302-6310. [65] Zhang Y,Gao L,Hensen E J M,et al. Evaluating the Stability of Co2P Electrocatalysts in the Hydrogen Evolution Reaction for both Acidic and Alkaline Electrolytes[J]. ACS Energy Lett,2018,3(6):1360-1365. [66] Peng X,Qasim A M,Jin W,et al. Ni-Doped Amorphous Iron Phosphide Nanoparticles on TiN Nanowire Arrays:An Advanced Alkaline Hydrogen Evolution Electrocatalyst[J]. Nano Energy,2018,53(12):66-73. [67] Son C Y,Kwak I H,Lim Y R,et al. FeP and FeP2 Nanowires for Efficient Electrocatalytic Hydrogen Evolution Reaction[J]. Chem Commun,2016,52(13):2819-2822. [68] Zhao X,Zhang Z,Cao X,et al. Elucidating the Sources of Activity and Stability of FeP Electrocatalyst for Hydrogen Evolution Reactions in Acidic and Alkaline Media[J]. Appl Catal B-Environ,2020,260(24):584-593. [69] Liang Y,Liu Q,Asiri A M,et al. Self-Supported FeP Nanorod Arrays:A Cost-Effective 3D Hydrogen Evolution Cathode with High Catalytic Activity[J]. ACS Catal,2014,4(11):4065-4069. [70] Grosvenor A P,Wik S D,Cavell R G,et al. Examination of the Bonding in Binary Transiton-Metal Mono-phosphides MP(M=Cr,Mn,Fe,Co) by X-Ray Photoelectron Spectroscopy[J]. Inorg Chem,2005,44(24):8988-8998. [71] Zhang Z,Lu B,Hao J,et al. FeP Nanoparticles Grown on Graphene Sheets as Highly Active Non-Precious-Metal Electrocatalysts for Hydrogen Evolution Reaction[J]. Chem Commun,2014,50(78):11554-11557. |
[1] | Hui-Hui LI, Kai-Sheng YAO, Ya-Nan ZHAO, Li-Na FAN, Yu-Lin TIAN, Wei-Wei LU. Ionic Liquid-Modulated Synthesis of Pt-Pd Bimetallic Nanomaterials and Their Catalytic Performance for Ammonia Borane Hydrolysis to Generate Hydrogen [J]. Chinese Journal of Applied Chemistry, 2023, 40(4): 597-609. |
[2] | Xiao-Hu LIU, Xiao-Juan LAI, Hong-Yan CAO, Ting-Ting WANG, Zhi-Qiang DANG. Synergistic Performance of Foaming Agent/Stabilizer/SiO2 Composite Foam Retarded Acid System [J]. Chinese Journal of Applied Chemistry, 2023, 40(1): 91-99. |
[3] | Chao ZHANG. Research Prospect of Single Atom Catalysts Towards Electrocatalytic Reduction of Carbon Dioxide [J]. Chinese Journal of Applied Chemistry, 2022, 39(6): 871-887. |
[4] | Yan WANG, Shu-Cong ZHANG, Xing-Kun WANG, Zhi-Cheng LIU, Huan-Lei WANG, Ming-Hua HUANG. Research Progress on Transition Metal⁃Based Catalysts for Hydrogen Evolution Reaction via Seawater Electrolysis [J]. Chinese Journal of Applied Chemistry, 2022, 39(6): 927-940. |
[5] | Lin-Jie SHANG, Jiang LIU, Ya-Qian LAN. Covalent Organic Framework Materials for Photo/ Electrocatalytic Carbon Dioxide Reduction [J]. Chinese Journal of Applied Chemistry, 2022, 39(4): 559-584. |
[6] | Li-Zhi SUN, Hao LYU, Xiao-Wen MIN, Ben LIU. Mesoporous Palladium⁃Boron Alloy Nanocatalysts: Synthesis and Performance in Methanol Oxidation Electrocatalysis [J]. Chinese Journal of Applied Chemistry, 2022, 39(4): 673-684. |
[7] | Hui DU, Chen-Yang YAO, Hao PENG, Bo JIANG, Shun-Xiang LI, Jun-Lie YAO, Fang ZHENG, Fang YANG, Ai-Guo WU. Applications of Transition Metal⁃doped Iron⁃based Nanoparticles in Biomedicine [J]. Chinese Journal of Applied Chemistry, 2022, 39(3): 391-406. |
[8] | HUANG Xiao-Tong, CHEN Ying-Xin, ZHU Ze-Bin, ZHOU Li-Hua. Research Progress on Detection of Ascorbic Acid by Nanomaterial-Based Spectral Analysis Method [J]. Chinese Journal of Applied Chemistry, 2021, 38(6): 637-650. |
[9] | LIU Jiao, ZOU Peng-Fei, LI Ping, ZHANG Xiao, WANG Xin-Xin, GAO Yuan-Yuan, LI Li-Li. Research Progress of the Peptide-Based Self-assembled Nanomaterials Against Microbial Resistance [J]. Chinese Journal of Applied Chemistry, 2021, 38(5): 546-558. |
[10] | LIU Lin-Chang, GUO Ya-Jun, ZHU Hong-Lin, MA Jing-Jing, LI Zhong-Yi, SHUI Miao, ZHENG Yue-Qing. Research Progress on Supported Ultrafine Nano-catalysts for Hydrolytic Dehydrogenation of Ammonia Borane [J]. Chinese Journal of Applied Chemistry, 2021, 38(11): 1405-1422. |
[11] | BI Yipiao, GONG Xue, YANG Fa, RUAN Mingbo, SONG Ping, XU Weilin. Polyvalent MnOx/C Electrocatalyst for Highly Efficient Nitrogen Reduction Reaction [J]. Chinese Journal of Applied Chemistry, 2020, 37(9): 1048-1055. |
[12] | FAN Zhe,ZHANG Shengsheng,TANG Jiahao,FAN Ping. Structure, Preparation and Application of Graded Nanomaterials [J]. Chinese Journal of Applied Chemistry, 2020, 37(5): 489-501. |
[13] | WANG Chunli,SUN Lianshan,ZHONG Ming,WANG Limin,CHENG Yong. Research Progress of Transition Metal and Compounds for Lithium-Sulfur Batteries [J]. Chinese Journal of Applied Chemistry, 2020, 37(4): 387-404. |
[14] | CHEN Jiaqi, ZHOU Yan, SUN Jingwen, ZHU Junwu, WANG Xin, FU Yongsheng. Recent Progress of Metal Organic Frameworks-Based Hollow Materials [J]. Chinese Journal of Applied Chemistry, 2020, 37(11): 1221-1235. |
[15] | WANG Qiushi, HE Junhui. Synthesis of Magnetic CuS Composite Nanomaterial and Its Specific Adsorption of Hg(II) in Water [J]. Chinese Journal of Applied Chemistry, 2020, 37(11): 1316-1323. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||