
Chinese Journal of Applied Chemistry ›› 2022, Vol. 39 ›› Issue (6): 871-887.DOI: 10.19894/j.issn.1000-0518.210244
• Review • Previous Articles Next Articles
Received:
2021-05-18
Accepted:
2021-10-13
Published:
2022-06-01
Online:
2022-06-27
Contact:
Chao ZHANG
About author:
zhchao@buaa.edu.cnSupported by:
CLC Number:
Chao ZHANG. Research Prospect of Single Atom Catalysts Towards Electrocatalytic Reduction of Carbon Dioxide[J]. Chinese Journal of Applied Chemistry, 2022, 39(6): 871-887.
Add to citation manager EndNote|Ris|BibTeX
URL: http://yyhx.ciac.jl.cn/EN/10.19894/j.issn.1000-0518.210244
Fig.2 Preparation process of CuSA/THCF: (a) Preparation of CuSA/THCF sample contains synthesis of ZIF precursors, electrospun and high-temperature treatment steps; (b) Digital photos of CuSA-THCF show the flexible of the sample[17]
Fig.3 Structural characterization of Cu single atoms: (a) XRD patterns; (b) High-resolution N1s spectral of CuSA/THCF; (c) High-resolution Cu2p spectral of CuSA/THCF show the unsaturated states of Cu atoms; (d) XANES spectral of CuSA/THCF, Cu foil and CuO; (e) EXAFS spectral of CuSA/THCF, Cu foil and CuO (f) EXAFS fitting results of CuSA/THCF confirm the existence of Cu-N4 coordinations [17]
Fig.4 Characterization of NiSA/N-C: (a) Preparation process of NiSA/N-C; (b) TEM image of NiSA/N-C; (c) HAADF-STEM image of NiSA/N-C; (d) SAED patterns of NiSA/N-C; (e and f) HAADF-STEM images of NiSA/N-C with different magnifications with single atom Ni marked by red circles; (g) EDS results and the corresponding elemental mapping of Ni, N and C species[22]
Fig.5 Characterization of Ni/Fe-N-C: (a and b) High-resolution XPS N1s spectral (a) and XRD patterns (b) of Ni/Fe-N-C, Fe-N-C, Ni-N-C and N-C samples; (c) K-edge XANES spectral of Ni/Fe-N-C, Fe-N-C, Ni-N-C and N-C samples; (d) EXAFS spectral of Ni/Fe-N-C, Fe-N-C, Ni-N-C and N-C samples; (e) EXAFS fitting results of Ni/Fe-N-C sample show the presence of Ni-N and Ni-Fe coordination[22]
Fig.6 Characterization of Mo2TiC2T x -PtSA sample: (a) TEM image of Mo2TiC2T x -PtSA sample; (b) HAADF-STEM image of Mo2TiC2T x -PtSA sample; (c) HAADF-STEM images and their corresponding nanostructure fitting result confirm the existence of single atom Pt; (d) STEM-EDS images and corresponding elemental mapping results; (e) EXAFS spectra of Mo2TiC2T x -PtSA, Pt foil and PtO2 samples; (f) EXAFS spectra of Mo2TiC2T x -PtSA, Pt foil and PtO2 samples[25]
Fig.7 Electrocatalytic CO2 reduction properties of Cu-CeO2-4%: (a) CV curves of Cu-CeO2, CeO2 and Cu samples; (b) Faradaic efficiencies of various CO2 reduction products catalysis by Cu-CeO2-4% under different potentials[26]
Fig.8 In situ high-temperature-shockwave synthesis of HT-SAs: (a) The schematic diagram shows the HT-SA synthesis and dispersion process; (b) Temperature evolution during the shockwave synthesis and a detailed heating/cooling pattern; (c) A ten-pulse shock heating pattern demonstrates the uniform temperature in each cycle with a high-temperature on state and a low temperature off state[27]
Fig.9 Preparation of Fe SAs/GO involves two steps: 1) Absorbed GO on the surface of Fe foam and formed Fe—O bonds with Fe atoms on the surface; 2) By mechanical force, GO is separated from the foam Fe surface. Using the principle that the strength of Fe—O is greater than the strength of Fe—Fe metal bond, single atomic Fe is formed[28]
Fig.10 Characterization of single atom Co catalyst: (a) EXAFS spectra of Co-N2, Co-N3 and Co-N4 samples; (b) XANES spectra of Co-N2, Co-N3 and Co-N4 samples[33]
Fig.11 In situ catalytic mechanism illustration of Ni-TAPc catalyst: (a and b) Raman spectra of Ni-TAPc collected on an Au electrode at various potentials (vs.RHE) in 0.5 mol/L KHCO3 aqueous solution at room temperature under an atmosphere of (c) Ar (1.01×105 Pa) and (d) CO2 (1.01×105 Pa); (c) Reaction pathway of CO2 reduction to CO on the Ni SAC[37]
Fig.12 Characterization of single atom Ni decorated N-doped graphene: (a) SEM image of A-Ni-NG; (b) TEM image of A-Ni-NG; (c) XRD patterns of Ni-NG, A-Ni-NSG and Ni-NG; (d) HAADF-STEM image of A-Ni-NG; (e) Elemental contents of A-Ni-NG, inset: high-resolution XPS N1s spectra; (f) High-resolution Ni2p spectra of different samples[47]
Fig.13 Electrocatalytic CO2 reduction results of A-Ni-NG: (a) LSV curves of different samples in 0.5 mol/L KHCO3 electrolyte at the rotation rate of 1600 r/min; (b) CO product Faradaic efficiencies of different samples under different potentials; (c) Comparations of TOF results of A-Ni-NG catalyst with a series of reported catalysts; (d) Total reduction current densities and CO product current densities of A-Ni-NG for 100 h long-term tests[47]
Fig.14 (a) Free energy profiles (at -0.78 V(vs.RHE)) for CO2 activation on Cu, Cu@Cu2O and APC of Cu10-Cu1x+ on Pd10Te3 nanowires; (b) Configurations of physisorbed CO2 and chemisorbed CO2 on Cu-APC[51]
Fig.15 Characterization of AD-Sn/N-1000 sample: (a) Bright-field STEM image of AD-Sn/N-1000 sample; (b-d) Dark-field STEM image of AD-Sn/N-1000 sample; (e) Elemental mapping images of AD-Sn/N-1000 sample; (f) High-resolution XPS Sn3d spectral of AD-Sn/N-1000 and Sn-CF1000[53]
Fig.16 Electrocatalytic properties of AD-Sn/N-C1000 sample: (a) Current densities curves of AD-Sn/N-C1000 and Sn-CF1000 samples in 0.1 mol/L KHCO3 electrolyte; (b) Faradaic efficiencies of AD-Sn/N-C1000 and Sn-CF1000 samples at different potentials; (c) Long-term test of AD-Sn/N-C1000 at -0.6 V vs.RHE; (d) Tafel slopes of CO product current densities of AD-Sn/N-C1000 and Sn-CF1000 samples[53]
Fig.17 XPS and XAFS spectra of Cu-CeO2 sample: (a) XPS Ce3d spectra of Cu-CeO2-4% sample; (b) XPS Cu2p3/2 spectra of Cu-CeO2-4% sample; (c) XANES spectra of Cu-CeO2, Cu foil, CuO and Cu2O samples; (d) EXAFS spectra of Cu-CeO2, Cu foil, CuO and Cu2O samples[26]
1 | DAVIS S J, LEWIS N S, SHANER M, et al. Net-Zero emissions energy systems[J]. Science, 2018, 360(6396): 1419-1427. |
2 | SPRINGMANN M, CLARK M, MASON-D'CROZ D, et al. Options for keeping the food system within environmental limits[J]. Nature, 2018, 562(7728): 519-525. |
3 | VENTO-TORMO R, EFREMOVA M, BOTTING R A, et al. Single-cell reconstruction of the early maternal-fetal interface in humans[J]. Nature, 2018, 563(7731): 347-353. |
4 | GAO D, ZHANG Y, ZHOU Z, et al. Enhancing CO2 electroreduction with the metal-oxide interface[J]. J Am Chem Soc, 2017, 139(16): 5652-5655. |
5 | HAO L, KANG L, HUANG H, et al. Surface-halogenation-induced atomic-site activation and local charge separation for superb CO2 photoreduction[J]. Adv Mater, 2019, 31(25): 1900546. |
6 | NIU K Y, XU Y, WANG H C, et al. A spongy nickel-organic CO2 reduction photocatalyst for nearly 100% selective CO production[J]. Sci Adv, 2017, 3(7): e1700921. |
7 | SZCZESNY J, RUFF A, OLIVEIRA A R, et al. Electroenzymatic CO2 fixation using redox polymer/enzyme-modified gas diffusion electrodes[J]. ACS Energy Lett, 2020, 5(1): 321-327. |
8 | LIU M, PANG Y, ZHANG B, et al. Enhanced electrocatalytic CO2 reduction via field-induced reagent concentration[J]. Nature, 2016, 537(7620): 382-386. |
9 | CAMERON R, WADE S P, GREGORY V, et al. Synergistic enhancement of electrocatalytic CO2 reduction with gold nanoparticles embedded in functional graphene nanoribbon composite electrodes[J]. J Am Chem Soc, 2017, 139(11): 4052-4061. |
10 | HATSUKADE T, KUHL K P, CAVE E R, et al. Insights into the electrocatalytic reduction of CO2 on metallic silver surfaces[J]. Phys Chem Chem Phys, 2014, 16(27): 13814-13819. |
11 | SHI M M, BAO D, LI S J, et al. Anchoring PdCu amorphous nanocluster on graphene for electrochemical reduction of N2 to NH3 under ambient conditions in aqueous solution[J]. Adv Energy Mater, 2018, 8(21): 1800124. |
12 | SHI M M, BAO D, WULAN B R, et al. Au sub-nanoclusters on TiO2 toward highly efficient and selective electrocatalyst for N2 conversion to NH3 at ambient conditions[J]. Adv Mater, 2017, 29(17): 1606550. |
13 | MARCINKOWSKI M D, DARBY M T, LIU J, et al. Pt/Cu single-atom alloys as coke-resistant catalysts for efficient C-H activation[J]. Nat Chem, 2018, 10(3): 325-332. |
14 | XU H, WAN J, ZHANG H, et al. A new platinum-like efficient electrocatalyst for hydrogen evolution reaction at all pH: single-crystal metallic interweaved V8C7 networks[J]. Adv Energy Mater, 2018, 8(23): 1800575. |
15 | JIANG K, SIAHROSTAMI S, ZHENG T, et al. Isolated Ni single atoms in graphene nanosheets for high-performance CO2 reduction[J]. Energy Environ Sci, 2018, 11(4): 893-903. |
16 | YANG F, SONG P, LIU X Z, et al. Highly efficient CO2 electroreduction on ZnN4-based single-atom catalyst[J]. Angew Chem, 2018, 57(38): 12303-12307. |
17 | YANG H P, WU Y, LI G D, et al. Scalable production of efficient single-atom copper decorated carbon membranes for CO2 electroreduction to methanol[J]. J Am Chem Soc, 2019, 141(32): 12717-12723. |
18 | LI J, CHEN S G, YANG N, et al. Ultrahigh-loading zinc single-atom catalyst for highly efficient oxygen reduction in both acidic and alkaline media[J]. Angew Chem, 2019, 58(21): 7035-7039. |
19 | TIAN C C, ZHANG H Y, ZHU X, et al. A new trick for an old support: stabilizing gold single atoms on LaFeO3 perovskite[J]. Appl Catal B, 2020, 261: 118178. |
20 | WU W Z, NIU C Y, WEI C, et al. Activation of MoS2 basal planes for hydrogen evolution by zinc[J]. Angew Chem, 2019, 58(7): 2029-2033. |
21 | GU J A, ZHU Q, SHI Y Z, et al. Single zinc atoms immobilized on MXene (Ti3C2Clx) layers toward dendrite-free lithium metal anodes[J]. ACS Nano, 2020, 14(1): 891-898. |
22 | ZHAO C M, DAI X Y, YAO T, et al. Ionic exchange of metal organic frameworks to access single nickel sites for efficient electroreduction of CO2[J]. J Am Chem Soc, 2017, 139(24): 8078-8081. |
23 | REN W B, TAN X, YANG W F, et al. Isolated diatomic Ni-Fe metal-nitrogen sites for synergistic electroreduction of CO2 [J]. Angew Chem, 2019, 58(21): 6972-6976. |
24 | ZHANG C, FU Z H, ZHAO Q, et al. Single-atom-Ni-decorated, nitrogen-doped carbon layers for efficient electrocatalytic CO2 reduction reaction[J]. Electrochem Commun, 2020, 116: 106758. |
25 | ZHANG J Q, ZHAO Y F, GUO X, et al. Single platinum atoms immobilized on an MXene as an efficient catalyst for the hydrogen evolution reaction[J]. Nat Catal, 2018, 1(12): 985-992. |
26 | WANG Y, CHEN Z, HAN P, et al. Single-atomic Cu with multiple oxygen vacancies on ceria for electrocatalytic CO2 reduction to CH4[J]. ACS Catal, 2018, 8(8): 7113-7119. |
27 | YAO Y G, HUANG Z N, XIE P F, et al. High temperature shockwave stabilized single atoms[J]. Nat Nanotechnol, 2019, 14(9): 851-857. |
28 | QU Y T, WANG L G, LI Z J, et al. Ambient synthesis of single-atom catalysts from bulk metal via trapping of atoms by surface dangling bonds[J]. Adv Mater, 2019, 31(44): 1904496. |
29 | RAMALINGAM V, VARADHAN P, FU H C, et al. Heteroatom-mediated interactions between ruthenium single atoms and an MXene support for efficient hydrogen evolution[J]. Adv Mater, 2019: 1903841. |
30 | HAN L L, LIU X J, CHEN J P, et al. Atomically dispersed molybdenum catalysts for efficient ambient nitrogen fixation[J]. Angew Chem, 2019, 58(8): 2321-2325. |
31 | LI Q H, CHEN W X, XIAO H, et al. Fe isolated single atoms on S, N codoped carbon by copolymer pyrolysis strategy for highly efficient oxygen reduction reaction[J]. Adv Mater, 2018, 30(25): 1800588. |
32 | HAN Y H, WANG Y G, CHEN W X, et al. Hollow N-doped carbon spheres with isolated cobalt single atomic sites: superior electrocatalysts for oxygen reduction[J]. J Am Chem Soc, 2017, 139(48): 17269-17272. |
33 | WANG X Q, CHEN Z, ZHAO X Y, et al. Regulation of coordination number over single Co sites: triggering the efficient electroreduction of CO2[J]. Angew Chem, 2018, 57(7): 1944-1948. |
34 | MISTRY H, VARELA A S, BONIFACIO C S, et al. Highly selective plasma-activated copper catalysts for carbon dioxide reduction to ethylene[J]. Nat Commun, 2016, 7: 12123. |
35 | BIRDJA Y Y, PEREZ-GALLENT E, FIGUEIREDO M C, et al. Advances and challenges in understanding the electrocatalytic conversion of carbon dioxide to fuels[J]. Nat Energy, 2019, 4: 732-745. |
36 | WANG Y H, WANG Z Y, DINH C T, et al. Catalyst synthesis under CO2 electroreduction favours faceting and promotes renewable fuels electrosynthesis[J]. Nat Catal, 2020, 3: 98-106. |
37 | LIU S, YANG H B, HUNG S F, et al. Elucidating the electrocatalytic CO2 reduction reaction over a model single-atom nickel catalyst[J]. Angew Chem, 2020, 59(2): 798-803. |
38 | WUTTING A, LIU C, PENG Q, et al. Tracking a common surface-bound intermediate during CO2-to-fuels catalysis[J]. ACS Cent Sci, 2016, 2(8): 522-528. |
39 | LUNA P D, QUINTERO-BERMUDEZ R, DINH C T, et al. Catalyst electro-redeposition controls morphology and oxidation state for selective carbon dioxide reduction[J]. Nat Catal, 2018,1: 103-110. |
40 | GENG Z G, KONG X D, CHEN W W, et al. Oxygen vacancies in ZnO nanosheets enhance CO2 electrochemical reduction to CO[J]. Angew Chem, 2018, 57(21): 6054-6059. |
41 | LI F W, XUE M Q, LI J Z, et al. Unlocking the electrocatalytic activity of antimony for CO2 reduction by two-dimensional engineering of the bulk material[J]. Angew Chem, 2017, 56(46): 14718-14722. |
42 | LIU Y M, ZHANG Y J, CHENG K, et al. Selective electrochemical reduction of carbon dioxide to ethanol on a boron- and nitrogen-Co-doped nanodiamond[J]. Angew Chem, 2017, 56(49): 15607-15611. |
43 | WON D H, SHIN H, KOH J, et al. Highly efficient, selective, and stable CO2 electroreduction on a hexagonal Zn catalyst[J]. Angew Chem, 2016, 55(32): 9297-9300. |
44 | NITOPI S, BERTHEUSSEN E, SCOTT S B, et al. Progress and perspectives of electrochemical CO2 reduction on copper in aqueous electrolyte[J]. Chem Rev, 2019, 119(12): 7610-7672. |
45 | MA M, TRZESNIEWSKI B J, XIE J, et al. Selective and efficient reduction of carbon dioxide to carbon monoxide on oxide-derived nanostructured silver electrocatalysts[J]. Angew Chem, 2016, 55(33): 9748-9752. |
46 | KORNIENKO N, ZHAO Y B, KLEY C S, et al. Metal-organic frameworks for electrocatalytic reduction of carbon dioxide[J]. J Am Chem Soc, 2015, 137(44): 14129-14135. |
47 | YANG H B, HUNG S F, LIU S, et al. Atomically dispersed Ni(I) as the active site for electrochemical CO2 reduction[J]. Nat Energy, 2018, 3(2): 140-147. |
48 | ZHANG C H, YANG S Z, WU J J, et al. Electrochemical CO2 reduction with atomic iron-dispersed on nitrogen-doped graphene[J]. Adv Energy Mater, 2018, 8(19): 1703487. |
49 | DING C M, FENG C C, MEI Y H, et al. Carbon nitride embedded with transition metals for selective electrocatalytic CO2 reduction[J]. Appl Catal B, 2020, 268: 118391. |
50 | ZHANG H C, CHANG X X, CHEN J G, et al. Computational and experimental demonstrations of one-pot tandem catalysis for electrochemical carbon dioxide reduction to methane[J]. Nat Commun, 2019, 10: 3340. |
51 | JIAO J Q, LIN R, LIU S J, et al. Copper atom-pair catalyst anchored on alloy nanowires for selective and efficient electrochemical reduction of CO2[J]. Nat Chem, 2019, 11: 222-228. |
52 | WANG Q J, CHEN L Y, LIU Z, et al. Phosphate-mediated immobilization of high-performance AuPd nanoparticles for dehydrogenation of formic acid at room temperature[J]. Adv Funct Mater, 2019, 29(39): 1903341. |
53 | ZHAO Y, LIANG J J, WANG C Y, et al. Tunable and efficient tin modified nitrogen-doped carbon nanofibers for electrochemical reduction of aqueous carbon dioxide[J]. Adv Energy Mater, 2018, 8(10): 1702524. |
54 | ZHAO Q, ZHANG C, HU R M, et al. Selective etching quaternary MAX phase toward single atom copper immobilized MXene (Ti3C2Clx) for efficient CO2 electroreduction to methanol[J]. ACS Nano, 2021, 15(3): 4927-4936. |
55 | ZHENG W Z, YANG J, CHEN H Q, et al. Atomically defined undercoordinated active sites for highly efficient CO2 electroreduction[J]. Adv Funct Mater, 2019, 30(4): 1907658. |
56 | ZHANG H C, CHANG X X, CHEN J G, et al. Computational and experimental demonstrations of one-pot tandem catalysis for electrochemical carbon dioxide reduction to methane[J]. Nat Commun, 2019, 10: 3340. |
[1] | Yan WANG, Shu-Cong ZHANG, Xing-Kun WANG, Zhi-Cheng LIU, Huan-Lei WANG, Ming-Hua HUANG. Research Progress on Transition Metal⁃Based Catalysts for Hydrogen Evolution Reaction via Seawater Electrolysis [J]. Chinese Journal of Applied Chemistry, 2022, 39(6): 927-940. |
[2] | Hui-Bing TAO, Zhen TIAN, Yong XIE, Yu SUN, Li WANG, Zhuo KANG, Yue ZHANG. Progress of In situ Raman Study on the Dynamic Structure Performance Correlation of Water Splitting Catalysts [J]. Chinese Journal of Applied Chemistry, 2022, 39(4): 528-539. |
[3] | Lin-Jie SHANG, Jiang LIU, Ya-Qian LAN. Covalent Organic Framework Materials for Photo/ Electrocatalytic Carbon Dioxide Reduction [J]. Chinese Journal of Applied Chemistry, 2022, 39(4): 559-584. |
[4] | Li-Zhi SUN, Hao LYU, Xiao-Wen MIN, Ben LIU. Mesoporous Palladium⁃Boron Alloy Nanocatalysts: Synthesis and Performance in Methanol Oxidation Electrocatalysis [J]. Chinese Journal of Applied Chemistry, 2022, 39(4): 673-684. |
[5] | BI Yipiao, GONG Xue, YANG Fa, RUAN Mingbo, SONG Ping, XU Weilin. Polyvalent MnOx/C Electrocatalyst for Highly Efficient Nitrogen Reduction Reaction [J]. Chinese Journal of Applied Chemistry, 2020, 37(9): 1048-1055. |
[6] | MENG Yang, YANG Chan, PENG Juan. Progress in Iron, Cobalt and Nickel-Based Metal Phosphide Nano-catalysts for Hydrogen Production under Alkaline Conditions [J]. Chinese Journal of Applied Chemistry, 2020, 37(7): 733-745. |
[7] | GUO Hongxia, CUI Jifang, LIU Li. Research Progress in Photocatalytic Reduction of CO2 Enhanced by Oxygen Vacancy [J]. Chinese Journal of Applied Chemistry, 2020, 37(3): 256-263. |
[8] | CHEN Jiaqi, ZHOU Yan, SUN Jingwen, ZHU Junwu, WANG Xin, FU Yongsheng. Recent Progress of Metal Organic Frameworks-Based Hollow Materials [J]. Chinese Journal of Applied Chemistry, 2020, 37(11): 1221-1235. |
[9] | CHE Tinghua, TAN Xiao, YAN Jiawei, SONG Fengdan, ZHANG Hongmei, QI Suitao. Synthesis of Copper Modified Porous Nickel Self-supported Electrode and Its Catalytic Oxidation of Glucose [J]. Chinese Journal of Applied Chemistry, 2019, 36(9): 1091-1098. |
[10] | LI Xinjie,XU He,YU Mei,ZHANG Chao,GUO Anru,LIU Chang. Nitrogen-Doped Graphitic Carbon Coated Cobalt Nanocatalysts for Highly Efficient and Durable Hydrogen Evolution Reaction [J]. Chinese Journal of Applied Chemistry, 2019, 36(5): 571-577. |
[11] | LI Xinjie, XU He, YU Mei, ZHANG Chao, GUO Anru, LIU Chang. Nitrogen-Doped Graphitic Carbon Coated Cobalt Nanocatalysts for Highly Efficient and Durable Hydrogen Evolution Reaction [J]. Chinese Journal of Applied Chemistry, 2019, 36(5): 0-0. |
[12] | LONG Xia,WANG Yaqiong,JU Min,WANG Zheng,YANG Shihe. Elaboration and Application of Transition Metals Based Layered Double Hydroxides for Electrochemical Water Oxidation [J]. Chinese Journal of Applied Chemistry, 2018, 35(8): 881-889. |
[13] | CHEN Si,SUN Lizhen,SHU Xinxin,ZHANG Jintao. Graphene-based Catalysts for Efficient Electrocatalytic Applications [J]. Chinese Journal of Applied Chemistry, 2018, 35(3): 272-285. |
[14] | ZHANG Ya, ZHENG Jianbin. Graphene Modified Glassy Carbon Electrode for Selective Determination of Metol in the Presence of Hydroquinone [J]. Chinese Journal of Applied Chemistry, 2016, 33(1): 103-107. |
[15] | YU Hao*, ZHENG Xiaochen, LIU Rantong, JIN Jun, JIAN Xuan. Preparation of Copper-iron Hexacyanoferrate Loaded Multi-walled Carbon Nanotubes Modified Electrode for the Determination of Nitrite [J]. Chinese Journal of Applied Chemistry, 2014, 31(11): 1336-1344. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||