
Chinese Journal of Applied Chemistry ›› 2022, Vol. 39 ›› Issue (6): 859-870.DOI: 10.19894/j.issn.1000-0518.220031
• Review • Next Articles
Zi-Li LI1(), Xing-Ran XU1,2, Jiang-Hao ZHAN1, Xiao-Hua HU1, Zi-Ying ZHANG2, Shi-Sheng XIONG1(
)
Received:
2022-02-11
Accepted:
2022-04-14
Published:
2022-06-01
Online:
2022-06-27
Contact:
Zi-Li LI,Shi-Sheng XIONG
About author:
sxiong@fudan.edu.cnSupported by:
CLC Number:
Zi-Li LI, Xing-Ran XU, Jiang-Hao ZHAN, Xiao-Hua HU, Zi-Ying ZHANG, Shi-Sheng XIONG. Advanced Materials for Lithography[J]. Chinese Journal of Applied Chemistry, 2022, 39(6): 859-870.
1 | XU H, KOSMA V, GIANNELIS E P, et al. In pursuit of Moore's Law: polymer chemistry in action[J]. Polym J, 2018, 50(1): 45-55. |
2 | LI J, HU Y, YU L, et al. Recent advances of nanospheres lithography in organic electronics[J]. Small, 2021, 17(28): 2100724. |
3 | https://www.forbes.com/sites/patrickmoorhead/2021/07/26/intel-updates-idm-20-strategy-with-new-node-naming-and-technologies/?sh=5385922629d5[EB]. |
4 | https://newsroomibmcom/2021-05-06-IBM-Unveils-Worlds-First-2-Nanometer-Chip-Technology,-Opening-a-New-Frontier-for-Semiconductors#assets_all[EB]. |
5 | LI L, LIU X, PAL S, et al. Extreme ultraviolet resist materials for sub-7 nm patterning[J]. Chem Soc Rev, 2017, 46(16): 4855-4866. |
6 | MANOURAS T, ARGITIS P. High sensitivity resists for EUV lithography: a review of material design strategies and performance results[J]. Nanomaterials, 2020, 10(8): 1593. |
7 | KWAK J, MISHRA A K, LEE J, et al. Fabrication of sub-3 nm feature size based on block copolymer self-assembly for next-generation nanolithography[J]. Macromolecules, 2017, 50(17): 6813-6818. |
8 | 朋小康, 黄兴文, 刘荣涛, 等. 光刻胶成膜剂: 发展与未来[J]. 应用化学, 2021, 38(9): 1079-1090. |
PENG X K, HUANG X W, LIU R T, et al. Photoresist film-forming agent: development and future[J]. Chinese J Appl Chem, 2021, 38(9): 1079-1090. | |
9 | 韦亚一. 超大规模集成电路先进光刻理论与应用[M]. 北京: 科学出版社, 2016. |
WEI Y Y. Advanced lithography theory and application of VLSI[M]. Beijing: Science Press, 2016. | |
10 | PI S, LI C, JIANG H, et al. Memristor crossbar arrays with 6-nm half-pitch and 2-nm critical dimension[J]. Nat Nanotechnol, 2019, 14(1): 35-39. |
11 | LIAO P N, BARTON B, HSU P. Development of fluoro-free surfactant rinse solutions for EUV photoresists[J]. Proc SPIE, 2021, 11854: 1185409. |
12 | MURASE S, KINOSHITA K, HORIE K, et al. Photo-optical control with large refractive index changes by photodimerization of poly (vinyl cinnamate) film[J]. Macromolecules, 1997, 30(25): 8088-8090. |
13 | CHEN Y, WANG Z, HE Y, et al. Light-enabled reversible self-assembly and tunable optical properties of stable hairy nanoparticles[J]. Proc Natl Acad Sci, 2018, 115(7): E1391-E400. |
14 | YU J, XU N, WEI Q, et al. Novel ester acetal polymers and their application for positive-tone chemically amplified i-line photoresists[J]. J Mater Chem C, 2013, 1(6): 1160-1167. |
15 | ZWEBER A E, WAGNER M, DEYOUNG J, et al. Mechanism of extreme ultraviolet photoresist development with a supercritical CO2 compatible salt[J]. Langmuir, 2009, 25(11): 6176-6190. |
16 | ITO H, SHERWOOD M. NMR analysis of chemically amplified resist films[J]. Proc SPIE, 1999, 3678: 104-115. |
17 | 李小欧, 顾雪松, 刘亚栋, 等. 193 nm 化学放大光刻胶研究进展[J]. 应用化学, 2021, 38(9): 1105-1118. |
LI X O, GU X S, LIU Y D, et al. Research progress on chemically amplified 193 nm photoresists[J]. Chinese J Appl Chem, 2021, 38(9): 1105-1118. | |
18 | WANG Z, WYILE K, MARIC M. Synthesis of narrow molecular weight distribution copolymers for ArF photoresist materials by nitroxide mediated polymerization[J]. Macromol React Eng, 2017, 11(3): 1600029. |
19 | LI Z, TANG M, LIANG S, et al. Bottlebrush polymers: from controlled synthesis, self-assembly, properties to applications[J]. Prog Polym Sci, 2021, 116: 101387. |
20 | OGLETREE D F. Molecular excitation and relaxation of extreme ultraviolet lithography photoresists[J]. Front Nanosci, 2016, 3678: 91-113. |
21 | FELIX N M, LIO A. Extreme ultraviolet (EUV) lithography XI[J]. Nanomaterials. 2020, 10: 1593. |
22 | TORTI E, PROTTI S, BOLLANTI S, et al. Aryl sulfonates as initiators for extreme ultraviolet lithography: applications in epoxy-based hybrid materials[J]. ChemPhotoChem, 2018, 2(5): 425-432. |
23 | SHIRAI M, MAKI K, OKAMURA H, et al. Non-chemically amplified EUV resist based on PHS[J]. J Photopolym Sci Technol, 2009, 22(1): 111-116. |
24 | SEKIGUCHI A, MATSUMTO Y. Study of acid diffusion behaves form PAG by using top coat method[J]. Proc SPIE, 2014, 9051: 90511S. |
25 | DING S, WANG C, SHI X, et al. Directly written photo-crosslinked fluorinated polycarbonate photoresist materials for second-order nonlinear optical (NLO) applications[J]. J Mater Chem C, 2019, 7(16): 4667-4672. |
26 | LU X Y, LUO H, WANG K, et al. CO2-based dual-tone resists for electron beam lithography[J]. Adv Funct Mater, 2021, 31(13): 2007417. |
27 | LEBEL O, SOLDREA A. 9. Molecular glasses: emerging materials for the next generation[M]. Germany: De Gruyter, 2020: 239-260. |
28 | LUO C, XU C, LV L, et al. Review of recent advances in inorganic photoresists[J]. RSC Adv, 2020, 10(14): 8385-8395. |
29 | WU L, HILBERS M F, LUGIER O, et al. Fluorescent Labeling to Investigate nanopatterning processes in extreme ultraviolet lithography[J]. ACS Appl Mater Interfaces, 2021, 13(43): 51790-51798. |
30 | WU L, TIEKINK M, GIULIANI A, et al. Tuning photoionization mechanisms of molecular hybrid materials for EUV lithography applications[J]. J Mater Chem C, 2019, 7(1): 33-47. |
31 | XU H, SAKAI K, KASAHRAR K, et al. Metal-organic framework-inspired metal-containing clusters for high-resolution patterning[J]. Chem Mater, 2018, 30(12): 4124-4133. |
32 | BESPAOY I, ZHANG Y, HAITJEMA J, et al. Key role of very low energy electrons in tin-based molecular resists for extreme ultraviolet nanolithography[J]. ACS Appl Mater Interfaces, 2020, 12(8): 9881-9889. |
33 | WU C, LU C, YU X, et al. An Efficient diazirine-based four-armed cross-linker for photo-patterning of polymeric semiconductors[J]. Angew Chem Int Ed, 2021, 60(39): 21521-21528. |
34 | CHEN R, WANG X, LI X, et al. A comprehensive nano-interpenetrating semiconducting photoresist toward all-photolithography organic electronics[J]. Sci Adv, 2021, 7(25): eabg0659. |
35 | ZHENG Y, YU Z, ZHANG S, et al. A molecular design approach towards elastic and multifunctional polymer electronics[J]. Nat Commun, 2021, 12(1): 5701. |
36 | ZHENG Y Q, LIU Y, ZHONG D, et al. Monolithic optical microlithography of high-density elastic circuits[J]. Science, 2021, 373(6550): 88-94. |
37 | 胡晓华, 熊诗圣. 先进光刻技术: 导向自组装[J]. 应用化学, 2021, 38(9): 1029-1078. |
HU X H, XIONG S S. Advanced lithography: directed self-assembly[J]. Chinese J Appl Chem, 2021, 38(9): 1029-1078. | |
38 | CHEN Y, XIONG S. Directed self-assembly of block copolymers for sub-10 nm fabrication[J]. Int J Extreme Manuf, 2020, 2(3): 032006. |
39 | SINTUREL C, BATES F S, HILLMYER M A. High χ-low N block polymers: how far can we go?[J]. ACS Macro Lett, 2015, 4(9): 1044-1050. |
40 | MURAMATSU M, NISHI T, IDO Y, et al. Defect mitigation of chemo-epitaxy DSA patterns[J]. Proc SPIE, 2020, 11326: 113260Y. |
41 | MURAMATSU M, NISHI T, IDO Y, et al. DSA process optimization for high volume manufacturing[J]. Proc SPIE, 2021, 11610: 116100N. |
42 | RUSSEL T, HJELM R P, SEEGER P. Temperature dependence of the interaction parameter of polystyrene and poly(methyl methacrylate)[J]. Macromolecules, 1990, 23(3): 890-893. |
43 | YANG G W, WU G P, CHEN X, et al. Directed self-assembly of polystyrene-b-poly(propylene carbonate) on chemical patterns via thermal annealing for next generation lithography[J]. Nano Lett, 2017, 17(2): 1233-1239. |
44 | ZHOU J, THAPAR V, CHEN Y, et al. Self-aligned assembly of a poly(2-vinylpyridine)-b-polystyrene-b-poly(2-vinylpyridine) triblock copolymer on graphene nanoribbons[J]. ACS Appl Mater Interfaces, 2021, 13(34): 41190-41199. |
45 | KIM J H, JIN H M, YANG G G, et al. Smart nanostructured materials based on self-assembly of block copolymers[J]. Adv Funct Mater, 2020, 30(2): 1902049. |
46 | ZAPSAS G, PATIL Y, GNANOU Y, et al. Poly(vinylidene fluoride)-based complex macromolecular architectures: from synthesis to properties and applications[J]. Prog Polym Sci, 2020, 104: 101231. |
47 | LO T Y, KRISHNAN M, LU K Y, et al. Silicon-containing block copolymers for lithographic applications[J]. Prog Polym Sci, 2018, 77: 19-68. |
48 | POUND-LANA G, BEZARDP, PETIT-ETIENNE C, et al. Dry-etching processes for high-aspect-ratio features with sub-10 nm resolution high-χ block copolymers[J]. ACS Appl Mater Interfaces, 2021, 13: 49184-49193. |
49 | LEGRAIN A, FLEURY G, MUMTAZ M, et al. Straightforward integration flow of a silicon-containing block copolymer for line-space patterning[J]. ACS Appl Mater Interfaces, 2017, 9(41): 43043-43050. |
50 | JO S, JEON S, KIM H, et al. Balanced interfacial interactions for fluoroacrylic block copolymer films and fast electric field directed assembly[J]. Chem Mater, 2020, 32(49): 9633-9641. |
51 | SUH H S, MANNAERT G, VANDENBROECK N, et al. Development of high-chi directed self-assembly process based on key learning from PS-b-PMMA system[J]. Proc SPIE, 2021, 11612: 116120P. |
52 | PANDAV G, DURAND W J, ELLOSPON C J, et al. Directed self-assembly of block copolymers using chemical patterns with sidewall guiding lines, backfilled with random copolymer brushes[J]. Soft Matter, 2015, 11(47): 9107-9114. |
53 | HAB E, KNG H, LIU C C, et al. Graphoepitaxial assembly of symmetric block copolymers on weakly preferential substrates[J]. Adv Mater, 2010, 22(38): 4325-4329. |
54 | CHENG J, SANDERS D, TRUONG H, et al. Simple and versatile methods to integrate directed self-assembly with optical lithography using a polarity-switched photoresist[J]. ACS Nano, 2010, 4(8): 4815-4823. |
55 | LIU C C, HAN E, ONSES M, et al. Fabrication of lithographically defined chemically patterned polymer brushes and mats[J]. Macromolecules, 2011, 44(7): 1876-1885. |
56 | HAN E, STUEN K, LEOLUKMAN M, et al. Perpendicular orientation of domains in cylinder-forming block copolymer thick films by controlled interfacial interactions[J]. Macromolecules, 2009, 42(13): 4896-4901. |
57 | https://www.researchandmarkets.com/reports/5401833/global-and-china-photoresist-industry-report[EB]. |
[1] | HU Xiao-Hua, XIONG Shi-Sheng. Advanced Lithography: Directed Self-Assembly [J]. Chinese Journal of Applied Chemistry, 2021, 38(9): 1029-1078. |
[2] | PENG Xiao-Kang, HUANG Xing-Wen, LIU Rong-Tao, ZHANG Yong-Wen, ZHANG Shi-Yang, LIU Yi-Dong, MIN Yong-Gang. Photoresist Film-Forming Agent: Development and Future [J]. Chinese Journal of Applied Chemistry, 2021, 38(9): 1079-1090. |
[3] | GU Xue-Song, LI Xiao-Ou, LIU Ya-Dong, JI Sheng-Xiang. Research Progress on g-Line and i-Line Photoresists [J]. Chinese Journal of Applied Chemistry, 2021, 38(9): 1091-1104. |
[4] | LI Xiao-Ou, GU Xue-Song, LIU Ya-Dong, JI Sheng-Xiang. Research Progress on Chemically Amplified 193 nm Photoresists [J]. Chinese Journal of Applied Chemistry, 2021, 38(9): 1105-1118. |
[5] | GUO Hai-Quan, YANG Zheng-Hua, GAO Lian-Xun. Progress Research on Photosensitive Polyimide [J]. Chinese Journal of Applied Chemistry, 2021, 38(9): 1119-1137. |
[6] | GAO Jia-Xing, CHEN Long, YU Jia-Ting, GUO Xu-Dong, HU Rui, WANG Shuang-Qing, CHEN Jin-Ping, LI Yi, YANG Guo-Qiang. Research Progress on High Resolution Extreme Ultraviolet Photoresist [J]. Chinese Journal of Applied Chemistry, 2021, 38(9): 1138-1153. |
[7] | CUI Hao, WANG Qian-Qian, WANG Xiao-Lin, HE Xiang-Ming, XU Hong. Towards Extreme Ultraviolet Lithography: Progress and Challenges of Photoresists [J]. Chinese Journal of Applied Chemistry, 2021, 38(9): 1154-1167. |
[8] | ZHAO Jun, YANG Shu-Min, XUE Chao-Fan, WU Yan-Qing, CHEN Yi-Fang, TAI Ren-Zhong. Extreme Ultraviolet Photoresist Inspection Platform in Shanghai Synchrotron Radiation Facility [J]. Chinese Journal of Applied Chemistry, 2021, 38(9): 1168-1174. |
Viewed | ||||||||||||||||||||||||||||||||||||||||||||||||||
Full text 1965
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||
Abstract |
|
|||||||||||||||||||||||||||||||||||||||||||||||||