[1] ERDMANN A, FÜHNER T, EVANSCHITZKY P, et al. Optical and EUV projection lithography: a computational view[J]. Microelectron Eng, 2015, 132(C): 21-34. [2] WURM S, JEON C U, LERCEL M, et al. SEMATECH's EUV program: a key enabler for EUVL introduction[J]. Proc SPIE-Int Soc Opt Eng, 2007, 15: 651705-651705. [3] FONTAINE B. Extreme ultraviolet (EUV) lithography[J]. Proc SPIE-Int Soc Opt Eng, 2010, 22(1): 42-79. [4] TAO P, SHENG L, WANG Q, et al. Photoresist for extreme ultraviolet lithography[C]. 2020 international workshop on advanced patterning solutions (IWAPS), 2020: 9286794. [5] SIMONE D, VESTERS Y, VANDENBERGHE G. Photoresists in extreme ultraviolet lithography (EUVL)[J]. Adv Opt Technol, 2017, 6(3/4): 163-172. [6] CHRISTOPHER K, HONG X, VASILIKI K, et al. EUV photolithography: resist progress and challenges[J]. Proc SPIE, 2018: 1058306. [7] EKINCI Y , VOCKENHUBER M, MOJARAD N, et al. EUV resists towards 11 nm half-pitch[C]. Extreme ultraviolet. International society for optics and photonics, 2014: 904804. [8] TSUBAKI H, TARUTANI S, FUJIMORI T, et al. Novel EUV resist materials design for 14 nm half pitch and below[J]. J Photopolym Sci Technol, 2014, 27(5): 90481E. [9] ALLEN R, THACKERAY J, SOMERVELL M, et al. Materials challenges for sub-20-nm lithography[J]. Proc SPIE-Int Soc Opt Eng, 2011: 7972. [10] AIDA A, CHRISTIAN D, PATRICK F, et al. Extreme ultraviolet interference lithography at the Paul Scherrer institute[J]. J Micro/Nanolithogr, MEMS, MOEMS, 2009, 8(2): 021204. [11] BUITRAGO E, KARIM W, EKINCI Y, et al. From powerful research platform for industrial EUV photoresist development, to world record resolution by photolithography: EUV interference lithography at the Paul Scherrer Institute[C]. UV & higher energy photonics: from materials to applications. International society for optics and photonics, 2016: 99260T. [12] GLATZEL H, ASHWORTH D, BREMER M, et al. Projection optics for extreme ultraviolet lithography (EUVL) microfield exposure tools (METs) with a numerical aperture of 0.5[C]. SPIE Advanced Lithography, 2013: 867917. [13] SASCHA B, JENNY T, SERHIY D, et al. Achromatic talbot lithography with partially coherent extreme ultraviolet radiation: process window analysis[J]. J Micro/Nanolithogr, MEMS, MOEMS, 2016, 15(4): 043502. [14] WALLACE J, CHENG Y, ISOYAN A, et al. A novel EUV exposure station for nanotechnology studies[J]. Nucl Instrum Methods Phys Res, Sect A, 2007, 582(1): 254-257. [15] FUKUSHIMA Y, YAMAGUCHI Y, IGUCHI T, et al. Development of interference lithography for 22 nm node and below[J]. Microelectron Eng, 2011, 88(8): 1944-1947. [16] ROEL G, HARUN H, YASIN E, et al, Characterization of extreme ultraviolet resists with interference lithography[J]. Microelectron Eng, 2006, 83: 1103-1106. [17] NAGAI T, NAKAGAWA H, NARUOKA T, et al. Novel high sensitivity EUV photoresist for sub-7 nm node[J]. J Photopolym Sci Technol. 2016, 29(3): 475-478. [18] PAIVANRANTA B, LANGNER A, KIRK E, et al. Sub-10 nm patterning using EUV interference lithography[J]. Nanotechnology, 2011, 22(37): 375302. [19] JUN Z, SHUMIN Y, CHAOFAN X, et al. The recent development of soft X-ray interference lithography in SSRF[J]. Int J Extreme Manuf, 2020, 2(1): 105-111. [20] 机时申请[EB/OL] .中国科学院上海高等研究院, [2017-03-17]. http://ssrf.sari.ac.cn/yhkf/jssq/201903/t20190306_478025.html. Beam time application[EB/OL]. Shanghai Advanced Research Institute, Chinese Academy of Sciences, [2017-03-17]. http://ssrf.sari.ac.cn/yhkf/jssq/201903/t20190306_478025.html. [21] WU C C, EDWIN S, HERMAN B, et al. EUV mask lifetime testing using EBL2 [C]. Extreme Ultraviolet (EUV) Lithography IX, Proc SPIE, 2018: 1058310. [22] SHUMIN Y, WANG L S, ZHAO J, et al. Developments at SSRF in soft X-ray interference lithography[J]. Nucl Sci Tech, 2015, 26(1): 1-7. [23] CHAOFAN X, YANQING W, FANGYUAN Z, et al. Development of broadband X-ray interference lithography large area exposure system[J]. Rev Sci Instrum, 2016, 87(4): 043303. [24] JUN Z, YANQING W, CHAOFAN X, et al. Fabrication of high aspect ratio nanoscale periodic structures by the soft X-ray interference lithography[J]. Microelectron Eng, 2017, 170: 49-53. [25] HUIJUAN X, SHUMIN Y, LIANSHENG W, et al. Nonuniform self-imaging of achromatic talbot lithography[J]. Chinese Opt Lett, 2019, 17(6): 79-83. [26] LEI L, LI Y, DENG X, et al. Laser-focused Cr atomic deposition pitch standard as a reference standard[J]. Sens Actuators, A, 2015, 222: 184-193. [27] 耿永友, 邓常猛, 吴谊群, 等. 极紫外光刻材料研究进展[J]. 红外与激光工程, 2014, 43(6): 1850-1856. GENG Y Y, DENG C M, WU Y Q, et al. Recent progress of extreme ultraviolet resists[J]. Infrared Laser Eng, 2016, 6: 1850-1856. [28] CHEN L, XU J, YUAN H, et al. Outgassing analysis of molecular glass photoresists under EUV irradiation[J]. Sci China: Chem, 2014, 57(12): 1746-1750. [29] CHEN J, HAO Q, WANG S, et al. Molecular glass resists based on 9,9′-spirobifluorene derivatives: pendant effect and comprehensive evaluation in EUV lithography[J]. ACS Appl Polym Mater, 2019, 1(3): 526-534. [30] 陈金平, 郝青山, 王双青, 等. 极紫外光刻胶产气的定性和定量检测[J]. 分析化学, 2020, 48(12): 1658-1665. CHEN J P, HAO Q S, WANG S Q, et al. Qualitative and quantitative measurement of outgassing of molecular glass photoresists under extreme ultraviolet lithography[J]. Chinese J Anal Chem, 2020, 48(12): 1658-1665. |