[1] KIM B H, KIM J Y, KIM S O. Directed self-assembly of block copolymers for universal nanopatterning[J]. Soft Matter, 2013, 9(10): 2780-2786. [2] YANG G W, WU G P, CHEN X, et al. Directed self-assembly of polystyrene-b-poly(propylene carbonate) on chemical patterns via thermal annealing for next generation lithography[J]. Nano Lett, 2017, 17(2): 1233-1239. [3] CHEN Y. Nanofabrication by electron beam lithography and its applications: a review[J]. Microelectron Eng, 2015, 135: 57-72. [4] VIEU C, CARCENAC F, P PIN A, et al. Electron beam lithography: resolution limits and applications[J]. Appl Surf Sci, 2000, 164(1/4): 111-117. [5] KTEM B, PAVLOV I, ILDAY S, et al. Nonlinear laser lithography for indefinitely large-area nanostructuring with femtosecond pulses[J]. Nat Photonics, 2013, 7(11): 897-901. [6] WALSH M E, ZHANG F, MENON R, et al. Maskless photolithography[M]//FELDMAN M. Nanolithography, 2014: 179-193. [7] RESNICK D J, CHOI J. A review of nanoimprint lithography for high-volume semiconductor device manufacturing[J]. Adv Opt Technol, 2017, 6(3/4): 229-241. [8] SCHOOT J V, SCHIFT H. Next-generation lithography-an outlook on EUV projection and nanoimprint[J]. Adv Opt Technol, 2017, 6(3/4): 159-162. [9] MOORE G E. Cramming more components onto integrated circuits[J]. Proc IEEE, 1998, 86(1): 82-85. [10] MOORE G E. Lithography and the future of Moore′s law[J]. SPIE-Int Soc Opt Eng, Proc, 1995, 2440: 2-17. [11] XU H, KOSMA V, GIANNELIS E P, et al. In pursuit of Moore′s law: polymer chemistry in action[J]. Polym J, 2017, 50(1): 45-55. [12] ITO H, WILLSON C G, FRECHET J M J. Positive and negative working resist compsn.-comprising polymer with acid labile gps., cationic photoinitiator and sensitiser: EP, EP102450-A[P]. 1983-05-02. [13] WILLSON C G, DAMMEL R A, REISER A. Photoresist materials: a historical perspective[J]. SPIE-Int Soc Opt Eng, Proc, 1997, 3049: 28-41. [14] GOKAN H, ESHO S, OHNISHI Y. Dry etch resistance of organic materials[J]. J Electrochem Soc, 2019, 130(1): 143-146. [15] WU B, KUMAR A. Extreme ultraviolet lithography: a review[J]. J Vac Sci Technol, B: Microelectron Nanometer Struct, 2007, 25(6): 1743-1761. [16] BANINE V, MOORS R. Plasma sources for EUV lithography exposure tools[J]. J Phys D: Appl Phys, 2004, 37(23): 3207-3212. [17] DE SIMONE D, VESTERS Y, VANDENBERGHE G. Photoresists in extreme ultraviolet lithography (EUVL)[J]. Adv Opt Technol, 2017, 6(3/4): 163-172. [18] ABHARI R S, ROLLINGER B, GIOVANNINI A Z, et al. Laser-produced plasma light source for extreme-ultraviolet lithography applications[J]. J Micro/Nanolithogr, MEMS, MOEMS, 2012, 11(2): 021114. [19] WOOD II O R. EUVL: challenges to manufacturing insertion[J]. J Photopolym Sci Technol, 2017, 30(5): 599-604. [20] TANAKA H, MATSUMOTO A, AKINAGA K, et al. Comparative study on emission characteristics of extreme ultraviolet radiation from CO2 and Nd∶YAG laser-produced tin plasmas[J]. Appl Phys Lett, 2005, 87(4): 041503. [21] FOMENKOV I V, BRANDT D C, BYKANOV A N, et al. Laser-produced plasma source system development[M]//LERCEL M J. Emerging lithographic technologies xi, Pts 1 and 2. 2007. [22] IRIE S, ENDO M, SASAGO M, et al. Study of transmittance of polymers and influence of photoacid generator on resist transmittance at extreme ultraviolet wavelength[J]. Jpn J Appl Phys, 2002, 41(9): 5864-5867. [23] SORTLAND M, HOTALEN J, DEL RE R, et al. Platinum and palladium oxalates: positive-tone extreme ultraviolet resists[J]. J Micro/Nanolithogr, MEMS, MOEMS, 2015, 14(4): 043511. [24] OGLETREE D F. Molecular excitation and relaxation of extreme ultraviolet lithography photoresists[M]//ROBINSON A, LAWSON R. Materials and processes for next generation lithography, 2016: 91-113. [25] HENKE B L, GULLIKSON E M, DAVIS J C. X-ray interactions: photoabsorption, scattering, transmission, and reflection at E=50-30,000 eV, Z=1-92[J]. At Data Nucl Data Tables, 1993, 54(2): 181-342. [26] YEH J J, LINDAU I. Atomic subshell photoionization cross-sections and asymmetry parameters-1 less-than-or-equal-to Z less-than-or-equal-to 103[J]. At Data Nucl Data Tables, 1985, 32(1): 1-155. [27] KOSTKO O, XU B, AHMED M, et al. Fundamental understanding of chemical processes in extreme ultraviolet resist materials[J]. J Chem Phys, 2018, 149(15): 154305. [28] TORTI E, PROTTI S, BOLLANTI S, et al. Aryl sulfonates as initiators for extreme ultraviolet lithography: applications in epoxy-based hybrid materials[J]. ChemPhotoChem, 2018, 2(5): 425-432. [29] FEDYNYSHYN T H, GOODMAN R B, ROBERTS J. Polymer matrix effects on acid generation[M]//HENDERSON C L. Advances in resist materials and processing technology xxv, Pts 1 and 2. 2008. [30] YAMAMOTO H, KOZAWA T, NAKANO A, et al. Dependence of acid generation efficiency on the protection ratio of hydroxyl groups in chemically amplified electron beam, X-ray and EUV resists[J]. JVST B, 2004, 22(6): 3522-3524. [31] TARUTANI S, TSUBAKI H, TAKIZAWA H, et al. EUV resist materials for 16 nm and below half pitch applications[J]. J Photopolym Sci Technol, 2012, 25(5): 597-602. [32] THACKERAY J, CAMERON J, JAIN V, et al. Progress in resolution, sensitivity and critical dimensional uniformity of EUV chemically amplified resists[M]//SOMERVELL M H, WALLOW T I. Advances in resist materials and processing technology xxx. 2013. [33] THACKERAY J W, NASSAR R A, BRAINARD R, et al. Chemically amplified resists resolving 25 nm 1∶1 line : space features with EUV lithography[M]//LERCEL M J. Emerging lithographic technologies xi, Pts 1 and 2. 2007. [34] CARDINEAU B, GARCZYNSKI P, EARLEY W, et al. Chain-scission polyethers for EUV lithography[J]. J Photopolym Sci Technol, 2013, 26(5): 665-671. [35] MANOURAS T, KAZAZIS D, KOUFAKIS E, et al. Ultra-sensitive EUV resists based on acid-catalyzed polymer backbone breaking[M]//GOLDBERG K A. Extreme ultraviolet. 2018. [36] TAMAOKI H, TARUTANI S, TSUBAKI H, et al. Characterizing polymer bound PAG type EUV resist[M]//ALLEN R D, SOMERVELL M H. Advances in resist materials and processing technology xxviii. 2011. [37] LIU J, QIAO Y, WANG L. Novel polymeric sulfonium photoacid generator and its application for chemically amplified photoresists[M]//WALLOW T I, HOHLE C K. Advances in patterning materials and processes xxxi. 2014. [38] TSUBAKI H, TARUTANI S, INOUE N, et al. EUV resist materials design for 15 nm half pitch and below[J]. J Photopolym Sci Technol, 2013, 26(5): 649-657. [39] YAMAMOTO H, VESTERS Y, JIANG J, et al. Role of metal sensitizers for sensitivity improvement in EUV chemically amplified resist[J]. J Photopolym Sci Technol, 2018, 31(6): 747-751. [40] SEKIGUCHI A, HARADA T, WATANABE T. A study on enhancing EUV resist sensitivity[M]//PANNING E M, GOLDBERG K A. Extreme ultraviolet. 2017. [41] JIANG J, GIORDANO G, FALLICA R, et al. Sensitizer for EUV chemically amplified resist: metal versus halogen[J]. J Photopolym Sci Technol, 2019, 32(1): 21-25. [42] POPESCU C, FROMMHOLD A, MCCLELLAND A, et al. Sensitivity enhancement of the high-resolution XMT multi-trigger resist for EUV lithography[M]//PANNING E M, GOLDBERG K A. Extreme ultraviolet. 2017. [43] BRAINARD R, KRUGER S, HIGGINS C, et al. Kinetics, chemical modeling and lithography of novel acid amplifiers for use in EUV photoresists[J]. J Photopolym Sci Technol, 2009, 22(1): 43-50. [44] KRUGER S, REVURU S, HIGGINS C, et al. Fluorinated acid amplifiers for EUV lithography[J]. J Am Chem Soc, 2009, 131(29): 9862-9863. [45] KRYSAK M, LEESON M, HAN E, et al. Extending resolution limits of EUV resist materials[M]//WOOD O R, PANNING E M. Extreme ultraviolet. 2015. [46] POLLENTIER I, VESTERS Y, PETERSEN J S, et al. Unraveling the role of photons and electrons upon their chemical interaction with photoresist during EUV exposure[M]//HOHLE C K. Advances in patterning materials and processes xxxv. 2018. [47] POLLENTIER I, PETERSEN J S, DE BISSCHOP P, et al. Unraveling the EUV photoresist reactions: which, how much, and how do they relate to printing performance[M]//GOLDBERG K A. Extreme ultraviolet. 2019. [48] LEE H, KIM M, MOON J, et al. Multiscale approach for modeling EUV patterning of chemically amplified resist[M]//GRONHEID R, SANDERS D P. Advances in patterning materials and processes xxxvi. 2019. [49] NARASIMHAN A, GRZESKOWIAK S, SRIVATS B, et al. Studying secondary electron behavior in EUV resists using experimentation and modeling[M]//WOOD O R, PANNING E M. Extreme ultraviolet. 2015. [50] PASPARAKIS G, MANOURAS T, ARGITIS P, et al. Photodegradable polymers for biotechnological applications[J]. Macromol Rapid Commun, 2012, 33(3): 183-198. [51] TIWALE N, SUBRAMANIAN A, KISSLINGER K, et al. Advancing next generation nanolithography with infiltration synthesis of hybrid nanocomposite resists[J]. J Mater Chem C, 2019, 7(29): 8803-8812. [52] FALLICA R, KIRCHNER R, EKINCI Y, et al. Comparative study of resists and lithographic tools using the lumped parameter model[J]. J Vac Sci Technol, B: Nanotechnol Microelectron: Mater, Process, Meas, Phenom AIP Adv, 2016, 34(6): 06k702. [53] HOSAKA Y, OYAMA T G, OSHIMA A, et al. Pulse radiolysis study on a highly sensitive chlorinated resist ZEP520A[J]. J Photopolym Sci Technol, 2013, 26(6): 745-750. [54] OYAMA T G, ENOMOTO K, HOSAKA Y, et al. Electron-beam-induced decomposition mechanisms of high-sensitivity chlorinated resist ZEP520A[J]. Appl Phys Express, 2012, 5(3): 036501. [55] FALLICA R, KAZAZIS D, KIRCHNER R, et al. Lithographic performance of ZEP520A and mr-PosEBR resists exposed by electron beam and extreme ultraviolet lithography[J]. JVST B, 2017, 35(6): 061603. [56] SHARMA S K, PAL S P, REDDY P G, et al. Design and development of low activation energy based nonchemically amplified resists (n-CARs) for next generation EUV lithography[J]. Microelectron Eng, 2016, 164: 115-122. [57] OYAMA T G, OSHIMA A, TAGAWA S. Estimation of resist sensitivity for extreme ultraviolet lithography using an electron beam[J]. AIP Adv, 2016, 6(8): 085210. [58] ECHIGO M, OGURO D. Development of new phenylcalix 4 resorcinarene: its application to positive-tone molecular resist for EB and EUV lithography[M]//HENDERSON C L. Advances in resist materials and processing technology xxvi. 2009. [59] OWADA T, YOMOGITA A, KASHIWAMURA T, et al. Development of novel positive-tone resists for EUVL[M]//HENDERSON C L. Advances in resist materials and processing technology xxvi. 2009. [60] KUDO H, NINA N, SATO T, et al. Extreme ultraviolet (EUV)-resist material based on noria (water wheel-like macrocycle ) derivatives with pendant alkoxyl and adamantyl ester groups[J]. J Photopolym Sci Technol, 2012, 25(5): 587-592. [61] KULSHRESHTHA P K, MARUYAMA K, KIANI S, et al. Sub-20nm lithography negative tone chemically amplified resists using cross-linker additives[M]//SOMERVELL M H, WALLOW T I. Advances in resist materials and processing technology xxx. 2013. [62] GREEN D P, JAIN V, BAILEY B, et al. Development of molecular resist derivatives for EUV lithography[M]//NAULLEAU P P. Extreme ultraviolet. 2013. [63] MANOURAS T, ARGITIS P. High sensitivity resists for EUV lithography: a review of material design strategies and performance results[J]. Nanomaterials, 2020, 10(8): 24. [64] TRIKERIOTIS M, BAE W J, SCHWARTZ E, et al. Development of an inorganic photoresist for DUV, EUV, and electron beam imaging[M]//ALLEN R D, SOMERVELL M H. Advances in resist materials and processing technology xxvii, pts 1 and 2. 2010. [65] OBER C K, ODENT J, XU H, et al. Elucidating the patterning mechanism of zirconium-based hybrid photoresists[J]. J Micro/Nanolithogr, MEMS, MOEMS, 2017, 16(4): 041007. [66] LI L, CHAKRABARTY S, SPYROU K, et al. Studying the mechanism of hybrid nanoparticle photoresists: effect of particle size on photopatterning[J]. Chem Mater, 2015, 27(14): 5027-5031. [67] XU H, SAKAI K, KASAHARA K, et al. Metal-organic framework-inspired metal-containing clusters for high-resolution patterning[J]. Chem Mater, 2018, 30(12): 4124-4133. [68] PASSARELLI J, MURPHY M, RE R D, et al. Organometallic carboxylate resists for extreme ultraviolet with high sensitivity[J]. J Micro/Nanolithogr, MEMS, MOEMS, 2015, 14(4): 043503. [69] SITTERLY J, MURPHY M, GRZESKOWIAK S, et al. Molecular organometallic resists for EUV (more): reactivity as a function of metal center (Bi, Sb and Te)[M]//HOHLE C K. Advances in patterning materials and processes xxxv. 2018. [70] CARDINEAU B, DEL RE R, MARNELL M, et al. Photolithographic properties of tin-oxo clusters using extreme ultraviolet light (13.5 nm)[J]. Microelectron Eng, 2014, 127: 44-50. [71] THAKUR N, TSENG L T, VOCKENHUBER M, et al. Stability studies on a sensitive EUV photoresist based on zinc metal oxoclusters[J]. J Micro/Nanolithogr, MEMS, MOEMS, 2019, 18(4): 043504. [72] BESPALOV I, ZHANG Y, HAITJEMA J, et al. Key role of very low energy electrons in tin-based molecular resists for extreme ultraviolet nanolithography[J]. ACS Appl Mater Interfaces, 2020, 12(8): 9881-9889. [73] MATTSON E C, CABRERA Y, RUPICH S M, et al. Chemical modification mechanisms in hybrid hafnium oxo-methacrylate nanocluster photoresists for extreme ultraviolet patterning[J]. Chem Mater, 2018, 30(17): 6192-6206. [74] WU L, BALJOZOVIC M, PORTALE G, et al. Mechanistic insights in Zr- and Hf-based molecular hybrid EUV photoresists[J]. J Micro/Nanolithogr, MEMS, MOEMS, 2019, 18(1): 013504. [75] HAITJEMA J, ZHANG Y, OTTOSSON N, et al. Photoreactions of tin oxo cages, model EUV Photoresists[J]. J Photopolym Sci Technol, 2017, 30(1): 99-102. |