
Chinese Journal of Applied Chemistry ›› 2025, Vol. 42 ›› Issue (3): 293-312.DOI: 10.19894/j.issn.1000-0518.240264
• Review •
Liang XIONG1(), Bing-Yang GAO1, Cong LIU2, Dong-Ming YIN2(
), Zhen-Hua ZHANG1, Zhi-Ya HAN1, Nan DING2, Yong CHENG2, Li-Min WANG2
Received:
2024-08-13
Accepted:
2025-01-24
Published:
2025-03-01
Online:
2025-04-11
Contact:
Liang XIONG,Dong-Ming YIN
About author:
dmyin@ciac.ac.cnSupported by:
CLC Number:
Liang XIONG, Bing-Yang GAO, Cong LIU, Dong-Ming YIN, Zhen-Hua ZHANG, Zhi-Ya HAN, Nan DING, Yong CHENG, Li-Min WANG. Research Progress in Nanoscale Magnesium-Based Hydrogen Storage Materials[J]. Chinese Journal of Applied Chemistry, 2025, 42(3): 293-312.
Fig.2 Schematic diagram of 0D spheres and clusters (A), 1D nanofibers, wires and rods (B), 2D films, plates, and networks (C) and 3D nanomaterials[24]
Fig.3 Hydrogen storage performance test chart of ultra-fine MgH2 nanoparticles: (A) TPD-MS; (B) TGA; (C) Isothermal TGA dehydrogenation at 200 ℃; (D) Isothermal TGA dehydrogention at 30 ℃; (E) Hydrogen nation with temperatare curves; (F) Isothermal hydrogenation curves; (G) Van't Hoff plot; (H) Arrhenius plots; (I) Cycling stobility[39]
Fig.4 (A) Schematic diagram of electrochemical formation of Mg particles, (B) XRD patterns, (C) HRTEM image, (D) STEM elemental mapping, (E) thermal stability, (F) hydrogen absorption kinetics and (G) hydrogen desorption kinetics[42]
Fig.8 SEM images of magnesium nanowires: sample 1 (A, B) 30~50 nm, sample 2 (C, D) 80~100 nm, sample 3 (E, F) 150~170 nm; TEM (G, H) and HRTEM (I) images of sample 1[100]
Fig.11 (A) TEM image of the Mg colloid synthesized by electrochemical method; (B) Mass spectrometry of H2 desorption for the MgH2 (hydrided state) and the Mg colloids (non-hydrided state) at 85 ℃; (C, D) TG-DSC signals of the Mg colloid after H2 absorption (hydrided sate) and desorption (non-hydrided state)[106]
1 | LI Q, PENG X, PAN F. Magnesium-based materials for energy conversion and storage[J]. J Magnes Alloys, 2021, 9(6): 2223. |
2 | TURNER J A. Sustainable hydrogen production[J]. Science, 2004, 305(5686): 972-974. |
3 | TAN Z H, OUYANG L Z, HUANG J M, et al. Hydrogen generation via hydrolysis of Mg2Si[J]. J Alloys Compd, 2019, 770: 108-115. |
4 | ZHU Y, OUYANG L, ZHONG H, et al. Closing the loop for hydrogen storage: facile regeneration of NaBH4 from its hydrolytic product[J]. Angew Chem Int Ed, 2020, 132(22): 8701-8707. |
5 | FENG X, YUAN J, LV Y, et al. Improvement of desorption performance of Mg(BH4)2 by two-dimensional Ti3C2 MXene addition[J]. Int J Hydrogen Energy, 2020, 45(33): 16654-16662. |
6 | 许剑轶, 张胤, 李霞. 稀土功能材料[M]. 北京: 化学工业出版社, 2015. |
XU J T, ZHANG Y, LI X. Rare earth functional materials[M]. Beijing: Chemical Industry Press, 2015. | |
7 | WEBB C J. A review of catalyst-enhanced magnesium hydride as a hydrogen storage material[J]. J Phys Chem Solids, 2015, 84: 96-106. |
8 | BARTHÉLÉMY H, WEBER M, BARBIER F. Hydrogen storage: recent improvements and industrial perspectives[J]. Int J Hydrogen Energy, 2017, 42(11): 7254-7262. |
9 | FROUDAKIS G E. Hydrogen storage in nanotubes & nanostructures[J]. Mater Today, 2011, 14(7/8): 324-328. |
10 | GUPTA A, BARON G V, PERREAULT P, et al. Hydrogen clathrates: next generation hydrogen storage materials[J]. Energy Stor Mater, 2021, 41: 69-107. |
11 | ZÜTTEL A. Materials for hydrogen storage[J]. Mater Today, 2003, 6(9): 24-33. |
12 | XU N, ZHOU H R, ZHANG M Q, et al. Synergistic effect of Pd single atoms and clusters on the de/re-hydrogenation performance of MgH2[J]. J Mater Sci Technol, 2024, 191: 49-62. |
13 | XIE X, CHEN M, LIU P, et al. High hydrogen desorption properties of Mg-based nanocomposite at moderate temperatures: the effects of multiple catalysts in situ formed by adding nickel sulfides/graphene[J]. J Power Sources, 2017, 371: 112-118. |
14 | HU X C, CHEN X W, ZHANG X Y, et al. In situ construction of interface with photothermal and mutual catalytic effect for efficient solar-driven reversible hydrogen storage of MgH2[J]. Adv Sci, 2024, 11: 2400274. |
15 | ZHANG J, ZHU Y, LIN H, et al. Metal hydride nanoparticles with ultrahigh structural stability and hydrogen storage activity derived from microencapsulated nanoconfinement[J]. Adv Mater, 2017, 29(24): 1700760. |
16 | ZHOU C, FANG Z Z, SUN P. An experimental survey of additives for improving dehydrogenation properties of magnesium hydride[J]. J Power Sources, 2015, 278: 38-42. |
17 | MALKA I E, CZUJKO T, BYSTRZYCKI J. Catalytic effect of halide additives ball milled with magnesium hydride[J]. Int J Hydrogen Energy, 2010, 35(4): 1706-1712. |
18 | SAN-MARTIN A, MANCHESTER F D. The H-Mg (hydrogen-magnesium) system[J]. J Phase Equilib, 1987, 8: 431-437. |
19 | SUN Y, SHEN C, LAI Q, et al. Tailoring magnesium based materials for hydrogen storage through synthesis: current state of the art[J]. Energy Stor Mater, 2018, 10: 168-198. |
20 | SHAO H, XIN G, ZHENG J, et al. Nanotechnology in Mg-based materials for hydrogen storage[J]. Nano Energy, 2012, 1(4): 590-601. |
21 | B ARBOLEDA JR N, KASAI H, NOBUHARA K, et al. Dissociation and sticking of H2 on Mg (0001), Ti (0001) and La (0001) surfaces[J]. J Phys Soc Jpn, 2004, 73(3): 745-748. |
22 | UCHIDA H T, WAGNER S, HAMM M, et al. Absorption kinetics and hydride formation in magnesium films: effect of driving force revisited[J]. Acta Mater, 2015, 85: 279-289. |
23 | BERUBE V, RADTKE G, DRESSELHAUS M, et al. Size effects on the hydrogen storage properties of nanostructured metal hydrides: a review[J]. Int J Energy Res, 2007, 31(6/7): 637-663. |
24 | SAJANLAL P R, SREEPRASAD T S, SAMAL A K, et al. Anisotropic nanomaterials: structure, growth, assembly, and functions[J]. Nano Rev, 2011, 2(1): 5883. |
25 | SCHNEEMANN A, WHITE J L, KANG S Y, et al. Nanostructured metal hydrides for hydrogen storage[J]. Chem Rev, 2018, 118(22): 10775-10839. |
26 | HITAM C N C, AZIZ M A A, RUHAIMI A H, et al. Magnesium-based alloys for solid-state hydrogen storage applications: a review[J]. Int J Hydrogen Energy, 2021, 46(60): 31067-31083. |
27 | ZHANG J, YAO Y, HE L, et al. Hydrogen storage properties and mechanisms of as-cast, homogenized and ECAP processed Mg98.5Y1Zn0.5 alloys containing LPSO phase[J]. Energy, 2021, 217: 119315. |
28 | WAGEMANS R W P, VAN LENTHE J H, DE JONGH P E, et al. Hydrogen storage in magnesium clusters: quantum chemical study[J]. J Am Chem Soc, 2005, 127(47): 16675-16680. |
29 | CHEUNG S, DENG W Q, VAN DUIN A C T, et al. ReaxFF(MgH) reactive force field for magnesium hydride systems[J]. J Phys Chem A, 2005, 109(5): 851-859. |
30 | VAJEESTON P, RAVINDRAN P, FICHTNEr M, et al. Influence of crystal structure of bulk phase on the stability of nanoscale phases: investigation on MgH2 derived nanostructures[J]. J Phys Chem C, 2012, 116(35): 18965-18972. |
31 | ZALUSKA A, ZALUSKI L, STRÖM-OLSEN J O. Nanocrystalline magnesium for hydrogen storage[J]. J Alloys Compd, 1999, 288(1/2): 217-225. |
32 | ZALUSKI L, ZALUSKA A, STRÖM-OLSEN J O. Hydrogen absorption in nanocrystalline Mg2Ni formed by mechanical alloying[J]. J Alloys Compd, 1995, 217(2): 245-249. |
33 | HUOT J, LIANG G, BOILY S, et al. Structural study and hydrogen sorption kinetics of ball-milled magnesium hydride[J]. J Alloys Compd, 1999, 293: 495-500. |
34 | WANG P, WANG A M, WANG Y L, et al. Decomposition behavior of MgH2 prepared by reaction ball-milling[J]. Scr Mater, 2000, 43(1): 83-87. |
35 | VARIN R A, CZUJKO T, WRONSKI Z. Particle size, grain size and γ-MgH2 effects on the desorption properties of nanocrystalline commercial magnesium hydride processed by controlled mechanical milling[J]. Nanotechnology, 2006, 17(15): 3856. |
36 | BANREJEE S, KUMAR A, RUZ P, et al. Improvement of hydrogen storage characteristics of catalyst free magnesium nanoparticles prepared by wet milling[J]. Int J Energy Res, 2021, 45(12): 17597-17608. |
37 | XU N, WANG K W, ZHU Y F, et al. PdNi biatomic clusters from metallene unlock record-low onset dehydrogenation temperature for bulk-MgH2[J]. Adv Mater, 2023, 35: 2303173. |
38 | RIEKE R D. Preparation of organometallic compounds from highly reactive metal powders[J]. Science, 1989, 246(4935): 1260-1264. |
39 | ZHANG X, LIU Y, REN Z, et al. Realizing 6.7 wt% reversible storage of hydrogen at ambient temperature with non-confined ultrafine magnesium hydrides[J]. Energy Environ Sci, 2021, 14(4): 2302-2313. |
40 | HAAS I, GEDANKEN A. Synthesis of metallic magnesium nanoparticles by sonoelectrochemistry[J]. Chem Commun, 2008(15): 1795-1797. |
41 | OUMELLAL Y, COURTY M, ROUGIER A, et al. Electrochemical reactivity of magnesium hydride toward lithium: new synthesis route of nano-particles suitable for hydrogen storage[J]. Int J Hydrogen Energy, 2014, 39(11): 5852-5857. |
42 | SHEN C, AGUEY-ZINSOU K F. Can γ-MgH2 improve the hydrogen storage properties of magnesium?[J]. J Mater Chem A, 2017, 5(18): 8644-8652. |
43 | WIBERG E, BAUER R. Der magnesiumwasserstoff MgH2[J]. Chem Ber, 1952, 85(6): 593-605. |
44 | BECKER W E, ASHBY E C. Hydrogenolysis of the grignard reagent[J]. J Org Chem, 1964, 29(4): 954-955. |
45 | SETIJADI E J, BOYER C, AGUEY-ZINSOU K F. Remarkable hydrogen storage properties for nanocrystalline MgH2 synthesised by the hydrogenolysis of grignard reagents[J]. PCCP, 2012, 14(32): 11386-11397. |
46 | SETIJADI E J, BOYER C, AGUEY-ZINSOU K F. MgH2 with different morphologies synthesized by thermal hydrogenolysis method for enhanced hydrogen sorption[J]. Int J Hydrogen Energy, 2013, 38(14): 5746-5757. |
47 | RAMBHUJUN N, AGUEY-ZINSOU K F. Halide-free grignard reagents for the synthesis of superior MgH2 nanostructures[J].Int J Hydrogen Energy, 2021, 46(56): 28675-28685. |
48 | HUANG L J, SHI S T, CUI J, et al. Thermally-assisted milling and hydrogenolysis for synthesizing ultrafine MgH2 with destabilized thermodynamics[J]. Nanotechnology, 2021, 32(28): 285402. |
49 | CHEN J, YANG H B, XIA Y Y, et al. Hydriding and dehydriding properties of amorphous magnesium-nickel films prepared by a sputtering method[J]. Chem Mater, 2002, 14(7): 2834-2836. |
50 | OGUCHI H, HEILWEIL E J, JOSELL D, et al. Infrared emission imaging as a tool for characterization of hydrogen storage materials[J]. J Alloys Compd, 2009, 477(1/2): 8-15. |
51 | GREMAUD R, BROEDERSZ C P, BORSA D M, et al. Hydrogenography: an optical combinatorial method to find new light-weight hydrogen-storage materials[J]. Adv Mater, 2007, 19(19): 2813-2817. |
52 | ARES J R, LEARDINI F, DÍAZ-CHAO P, et al. Non-isothermal desorption process of hydrogenated nanocrystalline Pd-capped Mg films investigated by ion beam techniques[J]. Int J Hydrogen Energy, 2014, 39(6): 2587-2596. |
53 | REDDY G L N, KUMAR S. Hydrogen storage studies in Pd/Ti/Mg films[J]. Int J Hydrogen Energy, 2018, 43(5): 2840-2849. |
54 | HIEDA J, NIINOMI M, NAKAI M, et al. In vitro biocompatibility of Ti-Mg alloys fabricated by direct current magnetron sputtering[J]. Mater Sci Eng C, 2015, 54: 1-7. |
55 | QU J, LIU Y, XIN G, et al. A kinetics study on promising hydrogen storage properties of Mg-based thin films at room temperature[J]. Dalton Trans, 2014, 43(15): 5908-5912. |
56 | GAUTAM Y K, SANGER A, KUMAR A, et al. A room temperature hydrogen sensor based on Pd-Mg alloy and multilayers prepared by magnetron sputtering[J]. Int J Hydrogen Energy, 2015, 40(45): 15549-15555. |
57 | PACANOWSKI S, WACHOWIAK M, JABłOŃSKI B, et al. Interface mixing and hydrogen absorption in Pd/Mg and Pd/Al/Mg thin films[J]. Int J Hydrogen Energy, 2021, 46(1): 806-813. |
58 | ZHANG J G, HUANG W C, LIU J W, et al. Microstructural evolution and hydrogen storage properties of Mg1- xNbx (x=0.17~0.76) alloy films via co-sputtering[J]. Int J Hydrogen Energy, 2019, 44(55): 29100-29107. |
59 | MITSUO A, AIZAWA T. Cold coating of magnesium base alloy films by ion beam sputtering[C]. Materials Science Forum- Trans Technol Publications, 2003, 419(Ⅱ): 927-930. |
60 | RAŠKOVIĆ-LOVRE Ž, MONGSTAD T, KARAZHANOV S, et al. Thermochromic and photochromic colour change in Mg-Ni-H thin films[J]. Mater Lett, 2017, 188: 403-405. |
61 | PLATZER-BJÖRKMAN C, MONGSTAD T, MAEHLEN J P, et al. Deposition of magnesium hydride thin films using radio frequency reactive sputtering[J]. Thin Solid Films, 2011, 519(18): 5949-5954. |
62 | LÉON A, KNYSTAUTAS E J, HUOT J, et al. Hydrogenation characteristics of air-exposed magnesium films[J]. J Alloys Compd, 2002, 345(1/2): 158-166. |
63 | 王辉. 镁基合金薄膜的微观结构与储氢性能[D]. 广州: 华南理工大学, 2003. |
WANG H. Microstructure and hydrogen storage properties of magnesium-based alloy films[D]. Guangzhou: South China University of Technology, 2003. | |
64 | LEON A, KNYSTAUTAS E J, HUOT J, et al. Hydrogen sorption properties of vanadium- and palladium-implanted magnesium films[J]. J Alloys Compd, 2003, 356: 530-535. |
65 | HAM B, JUNKAEW A, ARROYAVE R, et al. Size and stress dependent hydrogen desorption in metastable Mg hydride films[J]. Int J Hydrogen Energy, 2014, 39(6): 2597-2607. |
66 | LE-QUOC H, LACOSTE A, MIRAGLIA S, et al. MgH2 thin films deposited by one-step reactive plasma sputtering[J]. Int J Hydrogen Energy, 2014, 39(31): 17718-17725. |
67 | SINGH S, EIJT S W H, ZANDBERGEN M W, et al. Nanoscale structure and the hydrogenation of Pd-capped magnesium thin films prepared by plasma sputter and pulsed laser deposition[J]. J Alloys Compd, 2007, 441(1/2): 344-351. |
68 | BARAWI M, GRANERO C, DÍAZ-CHAO P, et al. Thermal decomposition of non-catalysed MgH2 films[J]. Int J Hydrogen Energy, 2014, 39(18): 9865-9870. |
69 | PLATZER-BJÖRKMAN C, MONGSTAD T, KARAZHANOV S Z, et al. Reactive sputtering of magnesium hydride thin films for photovoltaic applications[J]. MRS OPL, 2009, 1210: 1210-Q03-15. |
70 | HIGUCHI K, KAJIOKA H, TOIYAMA K, et al. In situ study of hydriding–dehydriding properties in some Pd/Mg thin films with different degree of Mg crystallization[J]. J Alloys Compd, 1999, 293: 484-489. |
71 | KELEKAR R, GIFFARD H, KELLY S T, et al. Formation and dissociation of MgH2 in epitaxial Mg thin films[J]. J Appl Phys, 2007, 101(11): 114311. |
72 | GHARAVI A G, AKYILDIZ H, ÖZTÜRK T. Thickness effects in hydrogen sorption of Mg/Pd thin films[J]. J Alloys Compd, 2013, 580: S175-S178. |
73 | KUMAR S, REDDY G L N, RAJU V S. Hydrogen storage in Pd capped thermally grown Mg films: studies by nuclear resonance reaction analysis[J]. J Alloys Compd, 2009, 476(1/2): 500-506. |
74 | HIGUCHI K, YAMAMOTO K, KAJIOKA H, et al. Remarkable hydrogen storage properties in three-layered Pd/Mg/Pd thin films[J]. J Alloys Compd, 2002, 330: 526-530. |
75 | REDDY G L N, KUMAR S, SUNITHA Y, et al. Intermixing and formation of Pd-Mg intermetallics in Pd/Mg/Si films[J]. J Alloys Compd, 2009, 481(1/2): 714-718. |
76 | SUNITHA Y, REDDY G L N, KUMAR S, et al. Studies on interdiffusion in Pd/Mg/Si films: towards improved cyclic stability in hydrogen storage[J]. Appl Surf Sci, 2009, 256(5): 1553-1559. |
77 | YE S Y, CHAN S L I, OUYANG L Z, et al. Hydrogen storage and structure variation in Mg/Pd multi-layer film[J]. J Alloys Compd, 2010, 504(2): 493-497. |
78 | TAN X H, HARROWER C T, AMIRKHIZ B S, et al. Nano-scale bi-layer Pd/Ta, Pd/Nb, Pd/Ti and Pd/Fe catalysts for hydrogen sorption in magnesium thin films[J]. Int J Hydrogen Energy, 2009, 34(18): 7741-7748. |
79 | FRY C M P, GRANT D M, WALKER G S. Catalysis and evolution on cycling of nano-structured magnesium multilayer thin films[J]. Int J Hydrogen Energy, 2014, 39(2): 1173-1184. |
80 | PIVAK Y, SCHREUDERS H, DAM B. Thermodynamic properties, hysteresis behavior and stress-strain analysis of MgH2 thin films, studied over a wide temperature range[J]. Crystals, 2012, 2(2): 710-729. |
81 | MAJID N A A, WATANABE J, NOTOMI M. Improved desorption temperature of magnesium hydride via multi-layering Mg/Fe thin film[J]. Int J Hydrogen Energy, 2021, 46(5): 4181-4187. |
82 | HUANG W C, YUAN J, ZHANG J G, et al. Improving dehydrogenation properties of Mg/Nb composite films via tuning Nb distributions[J]. Rare Met, 2017, 36: 574-580. |
83 | REN L, ZHU W, LI Y, et al. Oxygen vacancy-rich 2D TiO2 nanosheets: a bridge toward high stability and rapid hydrogen storage kinetics of nano-confined MgH2[J]. Nanomicro Lett, 2022, 14(1): 144. |
84 | ZHU W, REN L, LU C, et al. Nanoconfined and in situ catalyzed MgH2 self-assembled on 3D Ti3C2 MXene folded nanosheets with enhanced hydrogen sorption performances[J]. ACS Nano, 2021, 15(11): 18494-18504. |
85 | XIN G, YANG J, WANG C, et al. Superior (de) hydrogenation properties of Mg-Ti-Pd trilayer films at room temperature[J]. Dalton Trans, 2012, 41(22): 6783-6790. |
86 | MATSUDA J, UCHIYAMA N, KANAI T, et al. Effect of Mg/Ni ratio on microstructure of Mg-Ni films deposited by magnetron sputtering[J]. J Alloys Compd, 2014, 617: 47-51. |
87 | MATSUDA J, YOSHIDA K, SASAKI Y, et al. In situ observation on hydrogenation of Mg-Ni films using environmental transmission electron microscope with aberration correction[J]. Appl Phys Lett, 2014, 105: 083903. |
88 | YAMADA Y, BAO S, TAJIMA K, et al. In situ spectroscopic ellipsometry study of the hydrogenation process of switchable mirrors based on magnesium-nickel alloy thin films[J]. J Appl Phys, 2010, 107: 043517. |
89 | DIETRICH M K, LAUFER A, HAAS G, et al. Hydrogen sorption and desorption kinetics and hydrogenation stability of Mg-metal-hydride thin films[J]. Sens Actuator A Phys, 2014, 206: 127-131. |
90 | VERMEULEN P, GRAAT P C J, WONDERGEM H J, et al. Crystal structures of MgyTi100- y thin film alloys in the as-deposited and hydrogenated state[J]. Int J Hydrogen Energy, 2008, 33(20): 5646-5650. |
91 | BALDI A, GREMAUD R, BORSA D M, et al. Nanoscale composition modulations in MgyTi1- yHx thin film alloys for hydrogen storage[J]. Int J Hydrogen Energy, 2009, 34(3): 1450-1457. |
92 | ZAHIRI B, HARROWER C T, SHALCHI AMIRKHIZ B, et al. Rapid and reversible hydrogen sorption in Mg-Fe-Ti thin films[J]. Appl Phys Lett, 2009, 95: 103114. |
93 | ZAHIRI B, AMIRKHIZ B S, MITLIN D. Hydrogen storage cycling of MgH2 thin film nanocomposites catalyzed by bimetallic Cr Ti[J]. Appl Phys Lett, 2010, 97: 083106. |
94 | HIGHMORE R J, GREER A L. Eutectics and the formation of amorphous alloys[J]. Nature, 1989, 339(6223): 363-365. |
95 | CHEN J, YANG H B, XIA Y Y, et al. Hydriding and dehydriding properties of amorphous magnesium-nickel films prepared by a sputtering method[J]. Chem Mater, 2002, 14(7): 2834-2836. |
96 | HAN B, YU S, WANG H, et al. Nanosize effect on the hydrogen storage properties of Mg-based amorphous alloy[J]. Scr Mater, 2022, 216: 114736. |
97 | AKYILDIZ H, ÖZTÜRK T. Hydrogen sorption in crystalline and amorphous Mg-Cu thin films[J]. J Alloys Compd, 2010, 492(1/2): 745-750. |
98 | ZLOTEA C, LU J, ANDERSSON Y. Formation of one-dimensional MgH2 nano-structures by hydrogen induced disproportionation[J]. J Alloys Compd, 2006, 426(1): 357-362. |
99 | SAITA I, TOSHIMA T, TANDA S, et al. Hydrogen storage property of MgH2 synthesized by hydriding chemical vapor deposition[J]. J Alloys Compd, 2007, 446/447: 80-83. |
100 | LI W, LI C, MA H, et al. Magnesium nanowires: enhanced kinetics for hydrogen absorption and desorption[J]. J Am Chem Soc, 2007, 129(21): 6710-6711. |
101 | WANG H, SONG X, YOU L, et al. Oriented growth of magnesium nanowires by physical vapor deposition in high vacuum[J]. Scr Mater, 2015, 108: 68-71. |
102 | WANG H, SONG X, YOU L, et al. Influence factors on the formation of magnesium nanowires prepared by physical vapor deposition[J]. J Cryst, 2015, 432: 78-82. |
103 | PENG B, LI L, JI W, et al. A quantum chemical study on magnesium(Mg)/magnesium-hydrogen(Mg-H) nanowires[J]. J Alloys Compd, 2009, 484(1): 308-313. |
104 | 于福熹, 张金山. 零维材料的结构和光谱特性[C]. 中国材料研讨会, 1988. |
YU F X, ZHANG J S. Structure and spectral properties of zero-dimensional materials[C]. China Materials Symposium, 1988. | |
105 | WAGEMANS R W P, VAN LENTHE J H, DE JONGH P E, et al. Hydrogen storage in magnesium clus-ters: quantum chemical study[J]. J Am Chem Soc, 2005, 127(47): 16675-16680. |
106 | AGUEY-ZINSOU K F, ARES-FERNÁNDEZ J R. Synthesis of col-loidal magnesium: a near room temperature store for hydro-gen[J]. Chem Mater, 2008, 20: 376. |
107 | LIU M J, ZHAO S C, XIAO X Z, et al. Novel 1D carbon nanotubes uniformly wrapped nanoscale MgH2 for efficient hydrogen storage cycling performances with extreme high gravimetric and volumetric capacities[J]. Nano Energy, 2019, 61: 540-549. |
108 | REN L, ZHU W, ZHANG Q Y, et al. MgH2 confinement in MOF-derived N-doped porous carbon nanofibers for enhanced hydrogen storage[J]. Chem Eng J, 2022, 434: 134701. |
109 | REN L, ZHU W, LI Y H, et al. Oxygen vacancy-rich 2D TiO2 nanosheets: a bridge toward high stability and rapid hydrogen storage kinetics of nano-confined MgH2[J]. Nano-Micro Lett, 2022, 14: 144. |
110 | NICK S N, TIMOTHY S A, SARAH J F, et al. Size-dependent hydrogen storage properties of Mg nanocrystals prepared from solution[J]. J Am Chem Soc, 2011, 133(28): 10679-10681. |
[1] | Nian JIN, Chun-Li GAO, Quan-Qian GE, Mai XU, Xian LIANG, Chuan-Gao ZHU, Feng-Wu WANG. Research Progress on the Construction of Defective Titanium Dioxide and Its Application in Photocatalysis/Photoelectrocatalysis [J]. Chinese Journal of Applied Chemistry, 2025, 42(2): 149-167. |
[2] | Yi-Qian YANG, Xiao-Xia YAN, Hao PENG, Ai-Guo WU, Fang YANG. Advances of NIR-Ⅱ-Triggered Photodynamic Therapy in Overcoming Tumor Hypoxia Environment [J]. Chinese Journal of Applied Chemistry, 2024, 41(7): 925-936. |
[3] | Ying-Wei LI, Ji HAN, Bu-Yuan GUAN. Research Progress on the Synthesis and Application of Two-Dimensional Mesoporous Materials [J]. Chinese Journal of Applied Chemistry, 2024, 41(6): 767-782. |
[4] | Kong-Hao PENG, An-Qi BAI, Ying MENG, Hui YIN, Xin-Yao SU, Jin-Yu YANG, Shu-Rong LI, Ling-Yan ZHANG, Li-Xia LUO, Pei-Jun MENG. Research Progress of Nanomaterial Sensors in the Detection of Organophosphorus Pesticide Residues [J]. Chinese Journal of Applied Chemistry, 2024, 41(4): 472-483. |
[5] | Cong-Hui MIAO, Dilinuer AILI, Zheng-Kun LIAO, Jing-Shan LU, Qing-Hua LIU, Jiang-Yuan LI, Nulahong AISHA. Preparation of Fly Ash-based ZSM-5 Zeolite Molecular Sieve and Hydrogen Storage Properties [J]. Chinese Journal of Applied Chemistry, 2023, 40(7): 995-1003. |
[6] | Hui-Hui LI, Kai-Sheng YAO, Ya-Nan ZHAO, Li-Na FAN, Yu-Lin TIAN, Wei-Wei LU. Ionic Liquid-Modulated Synthesis of Pt-Pd Bimetallic Nanomaterials and Their Catalytic Performance for Ammonia Borane Hydrolysis to Generate Hydrogen [J]. Chinese Journal of Applied Chemistry, 2023, 40(4): 597-609. |
[7] | Quan-Bing REN, Ming ZHONG, Bo ZHENG, Lan FENG, Nan DING, Dong-Ming YIN, Yong CHENG, Li-Min WANG. Research Progress on Rare Earth Element Modified V-Based Solid Solution Hydrogen Storage Alloys [J]. Chinese Journal of Applied Chemistry, 2023, 40(12): 1601-1612. |
[8] | Xiao-Hu LIU, Xiao-Juan LAI, Hong-Yan CAO, Ting-Ting WANG, Zhi-Qiang DANG. Synergistic Performance of Foaming Agent/Stabilizer/SiO2 Composite Foam Retarded Acid System [J]. Chinese Journal of Applied Chemistry, 2023, 40(1): 91-99. |
[9] | Hui DU, Chen-Yang YAO, Hao PENG, Bo JIANG, Shun-Xiang LI, Jun-Lie YAO, Fang ZHENG, Fang YANG, Ai-Guo WU. Applications of Transition Metal⁃doped Iron⁃based Nanoparticles in Biomedicine [J]. Chinese Journal of Applied Chemistry, 2022, 39(3): 391-406. |
[10] | HUANG Xiao-Tong, CHEN Ying-Xin, ZHU Ze-Bin, ZHOU Li-Hua. Research Progress on Detection of Ascorbic Acid by Nanomaterial-Based Spectral Analysis Method [J]. Chinese Journal of Applied Chemistry, 2021, 38(6): 637-650. |
[11] | LIU Jiao, ZOU Peng-Fei, LI Ping, ZHANG Xiao, WANG Xin-Xin, GAO Yuan-Yuan, LI Li-Li. Research Progress of the Peptide-Based Self-assembled Nanomaterials Against Microbial Resistance [J]. Chinese Journal of Applied Chemistry, 2021, 38(5): 546-558. |
[12] | LIU Lin-Chang, GUO Ya-Jun, ZHU Hong-Lin, MA Jing-Jing, LI Zhong-Yi, SHUI Miao, ZHENG Yue-Qing. Research Progress on Supported Ultrafine Nano-catalysts for Hydrolytic Dehydrogenation of Ammonia Borane [J]. Chinese Journal of Applied Chemistry, 2021, 38(11): 1405-1422. |
[13] | MENG Yang, YANG Chan, PENG Juan. Progress in Iron, Cobalt and Nickel-Based Metal Phosphide Nano-catalysts for Hydrogen Production under Alkaline Conditions [J]. Chinese Journal of Applied Chemistry, 2020, 37(7): 733-745. |
[14] | FAN Zhe,ZHANG Shengsheng,TANG Jiahao,FAN Ping. Structure, Preparation and Application of Graded Nanomaterials [J]. Chinese Journal of Applied Chemistry, 2020, 37(5): 489-501. |
[15] | WANG Chunli,SUN Lianshan,ZHONG Ming,WANG Limin,CHENG Yong. Research Progress of Transition Metal and Compounds for Lithium-Sulfur Batteries [J]. Chinese Journal of Applied Chemistry, 2020, 37(4): 387-404. |
Viewed | ||||||||||||||||||||||||||||||||||||||||||||||||||
Full text 92
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||
Abstract 122
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||