
Chinese Journal of Applied Chemistry ›› 2025, Vol. 42 ›› Issue (4): 490-498.DOI: 10.19894/j.issn.1000-0518.240307
• Full Papers • Previous Articles Next Articles
Yu-Xin GAO1, Wei LIU2(), Rui LI2, Yan-Xiong PAN2, Deng-Fei WANG1, Ming-Jun ZHANG1, Shu-Yan HE1, Xiang-Ling JI2(
)
Received:
2024-09-26
Accepted:
2024-12-30
Published:
2025-04-01
Online:
2025-05-14
Contact:
Wei LIU,Xiang-Ling JI
CLC Number:
Yu-Xin GAO, Wei LIU, Rui LI, Yan-Xiong PAN, Deng-Fei WANG, Ming-Jun ZHANG, Shu-Yan HE, Xiang-Ling JI. Comparison of Chain Microstructure of Four Polyethylene Resins for Films and Pipes[J]. Chinese Journal of Applied Chemistry, 2025, 42(4): 490-498.
Sample | ρ/(g·cm-3) | MFR/(g·10 min-1) | Application |
---|---|---|---|
CPE | 0.961 | 8.0 | Casting polyethylene (CPE) film |
PERT | 0.941 | 0.55 | Polyethylene of raised temperature resistance (PERT); Pipes for hot and cold water system |
LLDPE | 0.920 | 1.0 | Linear low density polyethylene (LLDPE); Packaging |
BOPE | 0.912 | 0.85 | Biaxially oriented polyethylene (BOPE); Packaging |
Table 1 Information of the PE resins
Sample | ρ/(g·cm-3) | MFR/(g·10 min-1) | Application |
---|---|---|---|
CPE | 0.961 | 8.0 | Casting polyethylene (CPE) film |
PERT | 0.941 | 0.55 | Polyethylene of raised temperature resistance (PERT); Pipes for hot and cold water system |
LLDPE | 0.920 | 1.0 | Linear low density polyethylene (LLDPE); Packaging |
BOPE | 0.912 | 0.85 | Biaxially oriented polyethylene (BOPE); Packaging |
Sample | 10-4Mw | 10-4Mn | Mw/Mn |
---|---|---|---|
CPE | 9.65 | 2.19 | 4.42 |
PERT | 19.07 | 1.98 | 9.65 |
LLDPE | 14.48 | 5.56 | 2.60 |
BOPE | 8.47 | 2.42 | 3.50 |
Table 2 Relative molecular mass of the PE resins
Sample | 10-4Mw | 10-4Mn | Mw/Mn |
---|---|---|---|
CPE | 9.65 | 2.19 | 4.42 |
PERT | 19.07 | 1.98 | 9.65 |
LLDPE | 14.48 | 5.56 | 2.60 |
BOPE | 8.47 | 2.42 | 3.50 |
Sample | x(ethylene)/% | x(1-octene)/% | x(EOE)/% | x(EOO)/% | x(OOO)/% | x(OEO)/% | x(OEE)/% | x(EEE)/% | nE | nO |
---|---|---|---|---|---|---|---|---|---|---|
CPE | 99.8 | 0.2 | 0.2 | 0 | 0 | 0 | 0 | 99.8 | - | 1.0 |
PERT | 98.8 | 1.2 | 1.2 | 0 | 0 | 0 | 2.2 | 96.6 | 90.5 | 1.0 |
LLDPE | 97.8 | 2.2 | 2.2 | 0 | 0 | 0 | 4.3 | 93.5 | 45.4 | 1.0 |
BOPE | 97.5 | 2.5 | 2.5 | 0 | 0 | 0 | 2.5 | 95.0 | 78.4 | 1.0 |
Table 3 1-Octene molar fraction, triad sequence distribution, number-average sequence lengths of ethylene and 1-octene in the PE resins
Sample | x(ethylene)/% | x(1-octene)/% | x(EOE)/% | x(EOO)/% | x(OOO)/% | x(OEO)/% | x(OEE)/% | x(EEE)/% | nE | nO |
---|---|---|---|---|---|---|---|---|---|---|
CPE | 99.8 | 0.2 | 0.2 | 0 | 0 | 0 | 0 | 99.8 | - | 1.0 |
PERT | 98.8 | 1.2 | 1.2 | 0 | 0 | 0 | 2.2 | 96.6 | 90.5 | 1.0 |
LLDPE | 97.8 | 2.2 | 2.2 | 0 | 0 | 0 | 4.3 | 93.5 | 45.4 | 1.0 |
BOPE | 97.5 | 2.5 | 2.5 | 0 | 0 | 0 | 2.5 | 95.0 | 78.4 | 1.0 |
Sample | Tm/℃ | Tc/℃ | Xc/% |
---|---|---|---|
CPE | 133.2 | 118.1 | 76.5 |
PERT | 125.7 | 114.6 | 56.0 |
LLDPE | 110.9/119.6 | 67.5/107.6 | 49.0 |
BOPE | 125.3 | 110.1 | 41.4 |
Table 4 Melting temperature, crystallization temperature and crystallinity (Xc) of PE resins measured using DSC
Sample | Tm/℃ | Tc/℃ | Xc/% |
---|---|---|---|
CPE | 133.2 | 118.1 | 76.5 |
PERT | 125.7 | 114.6 | 56.0 |
LLDPE | 110.9/119.6 | 67.5/107.6 | 49.0 |
BOPE | 125.3 | 110.1 | 41.4 |
Fig.5 DSC heating scans for CPE (a), PERT (b), LLDPE (c) and BOPE (d) resins after SSA thermal fractionation (A) and methylene sequence length (MSL) distribution calculated from SSA thermal fractionation (B)
1 | PATEL K, CHIKKALI S H, SIVARAM S. Ultrahigh molecular weight polyethylene: catalysis, structure, properties, processing and applications[J]. Prog Polym Sci, 2020, 109: 101290. |
2 | PAXTON N C, ALLENBY M C, LEWIS P M, et al. Biomedical applications of polyethylene[J]. Eur Polym J, 2019, 118: 412-428. |
3 | WEE J W, PARK S Y, CHOI B H. Modeling and application of discontinuous slow crack growth behaviors of high-density polyethylene pipe with various geometries and loading conditions[J]. Eng Fract Mech, 2020, 236: 107205. |
4 | SPALDING M A, CHATTERJEE A. Handbook of industrial polyethylene and technology: definitive guide to manufacturing, properties, processing, applications and markets set[M]. Hoboken: John Wiley & Sons, 2017. |
5 | PETICOLAS W L, WATKINS J M. The molecular structure of polyethylene. Ⅶ. melt viscosity and the effect of molecular weight and branching[J]. J Am Chem Soc, 1957, 79(19): 5083-5085. |
6 | POPLI R, MANDELKERN L. Influence of structural and morphological factors on the mechanical-properties of the polyethylenes[J]. J Polym Sci Pol Phys, 1987, 25(3): 441-483. |
7 | WILLBOURN A H. Polymethylene and the structure of polyethylene: study of short-chain branching, its nature and effects[J]. J Polym Sci, 1959, 34(127): 569-597. |
8 | HOSODA S. Structural distribution of linear low-density polyethylenes[J]. Polym J, 1988, 20(5): 383-397. |
9 | ALAMO R G, MANDELKERN L. Thermodynamic and structural-properties of ethylene copolymers[J]. Macromolecules, 1989, 22(3): 1273-1277. |
10 | SHIRAYAMA K, KITA S I, WATABE H. Effects of branching on some properties of ethylene/α-olefin copolymers[J]. Makromol Chem, 1972, 151(1): 97-120. |
11 | WILD L, RYLE T R, KNOBELOCH D C, et al. Determination of branching distributions in polyethylene and ethylene copolymers[J]. J Polym Sci, Polym Phys Ed, 1982, 20(3): 441-455. |
12 | LUSTIGER A, MARKHAM R L. Importance of tie molecules in preventing polyethylene fracture under long-term loading conditions[J]. Polymer, 1983, 24(12): 1647-1654. |
13 | SEGUELA R. Critical review of the molecular topology of semicrystalline polymers: the origin and assessment of intercrystalline tie molecules and chain entanglements[J]. J Polym Sci Pol Phys, 2005, 43(14): 1729-1748. |
14 | CHENG J J, POLAK M A, PENLIDIS A. Influence of micromolecular structure on environmental stress cracking resistance of high density polyethylene[J]. Tunn Undergr Sp Technol, 2011, 26(4): 582-593. |
15 | YADEGARI A, MORSHEDIAN J, KHONAKDAR H A, et al. Influence of annealing on anisotropic crystalline structure of HDPE cast films[J]. Polyolefins J, 2016, 3(1): 1-9. |
16 | YADEGARI A, MORSHEDIAN J, KHONAKDAR H A, et al. Correlation of crystal alignment with interphase content in oriented high density polyethylene cast films[J]. CrystEngComm, 2016, 18(13): 2337-2346. |
17 | BOHM L L, ENDERLE H F, FLEISSNER M. High-density polyethylene pipe resins[J]. Adv Mater, 1992, 4(3): 234-238. |
18 | SCHRAMM D. PE-RT: a new class of polyethylene for industrial pipes: 25th international conference on offshore mechanics and arctic engineering[C]. 2006, 3: 513-521. |
19 | ZHANG C, ZHAO B, DING L, et al. Influence of comonomer distribution on crystallization kinetics and performance of polyethylene of raised temperature resistance[J]. Polym Int, 2019, 68(10): 1748-1758. |
20 | GUPTA P, WILKES G L, SUKHADIA A M, et al. Does the length of the short chain branch affect the mechanical properties of linear low density polyethylenes? an investigation based on films of copolymers of ethylene/1-butene, ethylene/1-hexene and ethylene/1-octene synthesized by a single site metallocene catalyst[J]. Polymer, 2005, 46(20): 8819-8837. |
21 | AJJI A, AUGER J, HUANG J, et al. Biaxial stretching and structure of various LLDPE resins[J]. Polym Eng Sci, 2004, 44(2): 252-260. |
22 | MULLER A J, HERNANDEZ Z H, ARNAL M L, et al. Successive self-nucleation/annealing (SSA): a novel technique to study molecular segregation during crystallization[J]. Polym Bull, 1997, 39(4): 465-472. |
23 | MÜLLER A J, MICHELL R M, PÉREZ R A, et al. Successive self-nucleation and annealing (SSA): correct design of thermal protocol and applications[J]. Eur Polym J, 2015, 65: 132-154. |
24 | FAZELI N, ARABI H, BOLANDI S. Effect of branching characteristics of ethylene/1-butene copolymers on melt flow index[J]. Polym Test, 2006, 25(1): 28-33. |
25 | RODRÍGUEZ-HERNÁNDEZ M T, ANGULO-SÁNCHEZ J L, PÉREZ-CHANTACO A. Determination of the molecular characteristics of commercial polyethylenes with different architectures and the relation with the melt flow index[J]. J Appl Polym Sci, 2007, 104(3): 1572-1578. |
26 | USAMI T, TAKAYAMA S. Identification of branches in low-density polyethylenes by fourier-transform infrared-spectroscopy[J]. Polym J, 1984, 16(10): 731-738. |
27 | RANDALL J C. A review of high resolution liquid 13carbon nuclear magnetic resonance characterizations of ethylene-based polymers[J]. J Macromol Sci, Polym Rev, 1989, 29(2/3): 201-317. |
28 | DEPOOTER M, SMITH P B, DOHRER K K, et al. Determination of the composition of common linear low-density polyethylene copolymers by 13C-NMR spectroscopy[J]. J Appl Polym Sci, 1991, 42(2): 399-408. |
29 | GALLAND G B, DE SOUZA R F, MAULER R S, et al. 13C NMR determination of the composition of linear low-density polyethylene obtained with [η 3-methallyl-nickel-diimine]PF6 complex[J]. Macromolecules, 1999, 32(5): 1620-1625. |
30 | MIRABELLA F M, BAFNA A. Determination of the crystallinity of polyethylene/α-olefin copolymers by thermal analysis: relationship of the heat of fusion of 100% polyethylene crystal and the density[J]. J Polym Sci, Part B: Polym Phys, 2002, 40(15): 1637-1643. |
31 | MANG M Q, WANKE S E. Quantitative determination of short-chain branching content and distribution in commercial polyethylenes by thermally fractionated differential scanning calorimetry[J]. Polym Eng Sci, 2003, 43(12): 1878-1888. |
32 | HUANG Y L, BROWN N. Dependence of slow crack-growth in polyethylene on butyl branch density-morphology and theory[J]. J Polym Sci Pol Phys, 1991, 29(1): 129-137. |
33 | MUELLER C, CAPACCIO G, HILTNER A, et al. Heat sealing of LLDPE: relationships to melting and interdiffusion[J]. J Appl Polym Sci, 1998, 70(10): 2021-2030. |
[1] | Xin-Yue SONG, Ben-Min HU, Shuai MENG, Heng-Chong SHI, De-An SHI, Zhao-Yang WANG, Hua-Wei YANG, Shi-Fang LUAN. Effect of Entanglement Degree on Condensed State Structure and Impact Strength of Ultra-High Relative Molecular Mass Polyethylene [J]. Chinese Journal of Applied Chemistry, 2025, 42(1): 58-68. |
[2] | Kun ZHANG, Bo ZHU, Chang-Bin DU, Yi HAN. Preparation and Radiation Shielding Mechanism of Lead-Boron-Polyethylene Composites [J]. Chinese Journal of Applied Chemistry, 2024, 41(8): 1168-1174. |
[3] | Chao WANG, Yong-Jun PENG, Bo ZHU, Yi HAN. Thermal Stability and Shielding Performance of Boron Carbide/Lead/Polyethylene Composite Materials [J]. Chinese Journal of Applied Chemistry, 2024, 41(6): 890-898. |
[4] | Jing-Wei LI, Rui-Peng ZHENG, Ming YANG, Juan ZHAO, Shuai ZHENG, Ya-Ke LI, Yun-Xia QI, Yi-Quan XU, Bai-Jun LIU. Properties of Irradiated Polyethylene Hot-Melt Tape and Its Application in Cable Insulation Layer Rejuvenation [J]. Chinese Journal of Applied Chemistry, 2024, 41(11): 1648-1655. |
[5] | Bing-Shuai CHEN, Hai-Tao ZHUO, Shu HUANG, Shao-Jun CHEN. Advances of High-Performance Polymer Binders for Silicon-Based Anodes [J]. Chinese Journal of Applied Chemistry, 2023, 40(5): 625-639. |
[6] | He-Chang SHI, Yan-Cun YU, Chang-Yu HAN. Morphology, Rheological and Mechanical Properties of Polyethylene/Aluminium Oxide Composites [J]. Chinese Journal of Applied Chemistry, 2022, 39(10): 1593-1599. |
[7] | LI Yi, CHENG Hong-Da, YU Yan-Cun, HAN Chang-Yu, CHEN Guang-Jian, ZHU Ying-Nan. Performance of Thermal Conductive High Density Polyethylene Composite [J]. Chinese Journal of Applied Chemistry, 2021, 38(8): 954-960. |
[8] | LU Ling-Pan, WU Jia-Jun, WANG Kai-Ti. Preparation of Long-Chain Branched Polyethylene Catalyzed by Tandem Catalytic System [J]. Chinese Journal of Applied Chemistry, 2021, 38(1): 69-76. |
[9] | DUAN Jinchi, QI Yunxia, SHI Chengying, ZHAO Qi, LIU Baijun, SUN Zhaoyan, XU Yiquan, HU Wei, ZHANG Niaona. Electron Beam Radiation Modification of Polyethylene Thermal Conductive Composites [J]. Chinese Journal of Applied Chemistry, 2020, 37(8): 896-903. |
[10] | HE Yufang, YAN Pinping, HUANG Baoquan, LUO Fubin, LI Hongzhou, QIAN Qingrong, CHEN Qinghua. Thermal Conductivity and Crystallization Behavior of Polyethylene Glycol/Boron Nitride Phase Change Composites [J]. Chinese Journal of Applied Chemistry, 2020, 37(6): 650-657. |
[11] | WEN Liang, YANG Huawei, SHI Hengchong, LUAN Shifang, YIN Jinghua, SHI Dean. Melt Functionalization of Polyethylene Initiated by N-Hydroxyphthalimide [J]. Chinese Journal of Applied Chemistry, 2020, 37(5): 518-523. |
[12] | QI Yanxin, HUANG Yubin, JIN Ningyi. Preparation and Release Behavior of Progesterone Nano Micelles in Vitro [J]. Chinese Journal of Applied Chemistry, 2020, 37(11): 1340-1342. |
[13] | AN Pinping, LUO Fubin, HUANG Baoquan, XIAO Liren, QIAN Qingrong, LI Hongzhou, CHEN Qinghua. Properties of Thermal Conductivity Enhanced Polyethylene Glycol-Based Phase Change Composites [J]. Chinese Journal of Applied Chemistry, 2020, 37(1): 46-53. |
[14] | LI Pei,ZHANG Jiaqi,LIU Wei,CHEN Quan,TANG Yujing,JI Xiangling,XUE Yanhu,SUN Guangping. Chain Structure and Properties of Four Commercial Low Density Polyethylene Resins [J]. Chinese Journal of Applied Chemistry, 2019, 36(11): 1237-1247. |
[15] | LÜ Wenqiang,GENG Chao,XU Jingwei. Synthesis of Polyethylene Glycol Aldehyde Derivatives by Ozonation [J]. Chinese Journal of Applied Chemistry, 2019, 36(1): 120-122. |
Viewed | ||||||||||||||||||||||||||||||||||||||||||||||||||
Full text 24
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||
Abstract 35
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||