1 |
ANSARI F, RIES M D, PRUITT L. Effect of processing, sterilization and crosslinking on uhmwpe fatigue fracture and fatigue wear mechanisms in joint arthroplasty[J]. J Mech Behav Biomed Mater, 2016, 53: 329-340.
|
2 |
BISTOLFI A, GIUSTRA F, BOSCO F, et al. Ultra-high molecular weight polyethylene (uhmwpe) for hip and knee arthroplasty: the present and the future[J]. J Orthop, 2021, 25: 98-106.
|
3 |
宋新月, 魏悦, 沈杰, 等. 超高分子量聚乙烯模塑板材的抗冲击机制[J]. 高等学校化学学报, 2023, 44(4): 180-189.
|
|
SONG X Y, WEI Y, SHEN J, et al. Impact resistance mechanism of ultra-high molecular weight polyethylene molded sheet[J]. Chem J Chin Univ, 2023, 44(4): 180-189.
|
4 |
ZHANG H, ZHAO S, YU X, et al. Nascent particle sizes and degrees of entanglement are responsible for the significant differences in impact strength of ultrahigh molecular weight polyethylene[J]. J Polym Sci, Part B: Polym Phys, 2019, 57: 632-641.
|
5 |
LI Z, ZHANG W, FENG L Y, et al. Role of the amorphous morphology in physical properties of ultra high molecular weight polyethylene[J]. Polym-Plast Technol Eng, 2014, 53: 1194-1204.
|
6 |
范仲勇, 于瀛, 王一任, 等. 链缠结对聚合物结晶行为的影响[J]. 高等学校化学学报, 2003, 24(8): 1528-1530.
|
|
FAN Z Y, YU Y, WANG Y R, et al. Influence of intermolecular entanglements on crystallization behavior of macromolecules[J]. Chem J Chin Univ, 2003, 24(8): 1528-1530.
|
7 |
LIPPITS D R, RASTOGI S, HÖHNE G W H, et al. Heterogeneous distribution of entanglements in the polymer melt and its influence on crystallization[J]. Macromolecules, 2007, 40(4): 1004-1010.
|
8 |
LIU K, DE BOER E L, YAO Y, et al. Heterogeneous distribution of entanglements in a nonequilibrium polymer melt of uhmwpe: influence on crystallization without and with graphene oxide[J]. Macromolecules, 2016, 49(19): 7497-7509.
|
9 |
董澎, 王柯, 李军方, 等. 超高分子量聚乙烯烧结制品的链缠结调控及其对性能影响[J]. 高分子学报, 2020, 51(1): 117-124.
|
|
DONG P, WANG K, LI J F, et al. Chain entanglement regulation of sintered ultrahigh molecular weight polyethylene and its effect on properties[J]. Acta Polym Sin, 2020, 51(1): 117-124.
|
10 |
ZHU C, ZHAO J. Nucleation and crystallization of polymer melts under cyclic stretching: entanglement effect[J]. Macromolecules, 2023, 56(14): 5490-5501.
|
11 |
BU H, GU F, BAO L, et al. Influence of entanglements on crystallization of macromolecules[J]. Macromolecules, 1998, 31(20): 7108-7110.
|
12 |
ZHANG Z, KANG X H, JIANG Y, et al. Access to disentangled ultrahigh molecular weight polyethylene via a binuclear synergic effect[J]. Angew Chem Int Ed, 2023, 62(4): 20221558.
|
13 |
CHRISTAKOPOULOS F, TROISI E M, SOLOGUBENKO A S, et al. Melting kinetics, ultra-drawability and microstructure of nascent ultra-high molecular weight polyethylene powder[J]. Polymer, 2021, 222: 123633.
|
14 |
KISSINGER H E. Variation of peak temperature with heating rate in differential thermal analysis[J]. J Res Natl Bur Stand, 1956, 57(4): 217-221.
|
15 |
QIN Y N, SONG W B, CHEN M, et al. Chain entanglements and interlamellar links in isotactic polybutene-1: the effect of condis crystals and crystallization temperature[J]. Macromolecules, 2022, 55(13): 5636-5644
|
16 |
KAVESH S, SCHULTZ J M. Lamellar and interlamellar structure in melt-crystallized polyethylene. I. degree of crystallinity, atomic positions, particle size, and lattice disorder of the first and second kinds[J]. J Polym Sci, Part B: Polym Phys, 1970, 8(2): 243-276.
|
17 |
ALLEN G, GEE G, MANGARAJ D, et al. Intermolecular forces and chain flexibilities in polymers. 2. internal pressures of polymers[J]. Polymer, 1960, 1(4): 467-476.
|
18 |
FU J, GHALI B W, LOZYNSKY A J, et al. Ultra high molecular weight polyethylene with improved plasticity and toughness by high temperature melting[J]. Polymer, 2010, 51(12): 2721-2731.
|
19 |
FERRY J D.Viscoelastic properties of polymers[M].New York: Wiley, 1970.
|
20 |
ANDABLO-REYES E A, DE BOER E L, ROMANO D, et al. Stress relaxation in the nonequilibrium state of a polymer melt[J]. J Rheol, 2014, 58(6): 1981-1991.
|
21 |
HAWKE L G D, ROMANO D, RASTOGI S. Nonequilibrium melt state of ultra-high-molecular-weight polyethylene: a theoretical approach on the equilibrium process[J]. Macromolecules, 2019, 52(22): 8849-8866.
|
22 |
LIU K S, RONCA S, ANDABLO-REYES E, et al. Unique rheological response of ultrahigh molecular weight polyethylenes in the presence of reduced graphene oxide[J]. Macromolecules, 2015, 48(1): 131-139.
|
23 |
BARHAM P J, SADLER D M. A neutron scattering study of the melting behaviour of polyethylene single crystals[J]. Polymer, 1991, 32(3): 393-395.
|
24 |
BASTIAANSEN C W M, MEYER H E H, LEMSTRA P J. Memory effects in polyethylenes: influence of processing and crystallization history[J]. Polymer, 1990, 31(8): 1435-1440.
|
25 |
XUE Y Q, TERVOORT T A, LEMSTRA P J. Welding behavior of semicrystalline polymers. 1. the effect of nonequilibrium chain conformations on autoadhesion of UHMWPE[J]. Macromolecules, 1998, 31(9): 3075-3080.
|
26 |
DEGENNES P G. Explosion upon melting[J]. Cr Acad Sci Ⅱ B-mec, 1995, 321(9): 363-365.
|
27 |
NI L L, XU S S, SUN C X, et al. Retarded crystallization and promoted phase transition of freeze-dried polybutene-1: direct evidence for the critical role of chain entanglement[J]. ACS Macro Lett, 2022, 11(2): 257-263.
|
28 |
BU H, GU F, BAO L, et al. Influence of entanglements on crystallization of macromolecules[J]. Macromolecules, 1998, 31(20): 7108-7110.
|
29 |
刘英, 刘萍, 陈成泗, 等. 超高分子量聚乙烯的特性及应用进展[J]. 国外塑料, 2005, 23(11): 36-40.
|
|
LIU Y, LIU P, CHEN C S, et al. Characteristic and application progress of UHMWPE[J]. World Plast, 2005, 23(11): 36-40.
|
30 |
KURTZ S M. Chapter 2-from ethylene gas to UHMWPE component: the process of producing orthopedic implants[M]. New York: William Andrew Publishing, 2004.
|
31 |
胡逸伦, 赵文静, 李志, 等. UHMWPE初生态微观结构及不同成型条件下制品力学性能研究[J]. 材料科学与工艺, 2020, 28(5): 1-10.
|
|
HU Y L, ZHAO W J, LI Z, et al. Research on the microstructure of UHMWPE primary particles and mechanical performances of products under different processing conditions[J]. Mater Sci Technol, 2020, 28(5): 1-10.
|
32 |
DENG S.Tensile deformation of semi-crystalline polymers by molecular dynamics simulation[J]. Iran Polym J, 2017, 26(12): 903-911.
|
33 |
SAHIN K, CLAWSON J K, SINGLETARY J, et al. Limiting role of crystalline domain orientation on the modulus and strength of aramid fibers[J]. Polymer, 2018, 140: 96-106.
|
34 |
WARD I M. Optical and mechanical anisotropy in crystalline polymers[J]. Proc Phys Soc, 2002, 80(5): 1176.
|
35 |
SEDIGHIAMIRI A, GOVAERT L E, DOMMELEN J A W V. Micromechanical modeling of the deformation kinetics of semicrystalline polymers[J]. J Polym Sci, Part B: Polym Phys, 2011, 49(18): 1297-1310.
|
36 |
BROOKS N W, GHAZALI M, DUCKETT R A, et al. Effects of morphology on the yield stress of polyethylene[J]. Polymer, 1998, 40(4): 821-825.
|
37 |
BROOKS N W J, MUKHTAR M. Temperature and stem length dependence of the yield stress of polyethylene[J]. Polymer, 2000, 41(4): 1475-1480.
|
38 |
张国耀, 徐力平. 热拉伸的超高分子量聚乙烯的晶体结构和力学性能[J]. 高分子学报, 1995(5): 577-585.
|
|
ZHANG G Y, XU L P. Crystal structure and mechanical properties of hot drawn UHMWPE[J]. Acta Polym Sin, 1995(5): 577-585.
|