Chinese Journal of Applied Chemistry ›› 2025, Vol. 42 ›› Issue (1): 69-77.DOI: 10.19894/j.issn.1000-0518.240204
• Full Papers • Previous Articles Next Articles
Lu-Sheng HAN1, Yu-Dan WANG1, Yu-Hang LI2, Gen-Yue LI1, Xin-Hong SONG1, Kai-Li YANG1, Xin TAN2(), En-Peng WANG1()
Received:
2024-07-03
Accepted:
2024-12-20
Published:
2025-01-01
Online:
2025-01-24
Contact:
Xin TAN,En-Peng WANG
About author:
wangep@ccucm.edu.cn;Supported by:
CLC Number:
Lu-Sheng HAN, Yu-Dan WANG, Yu-Hang LI, Gen-Yue LI, Xin-Hong SONG, Kai-Li YANG, Xin TAN, En-Peng WANG. Identification of Age of Forest Sun-Dried Ginseng Based on Hyperspectral Imaging Technology[J]. Chinese Journal of Applied Chemistry, 2025, 42(1): 69-77.
Add to citation manager EndNote|Ris|BibTeX
URL: http://yyhx.ciac.jl.cn/EN/10.19894/j.issn.1000-0518.240204
Models | Training set | Cross-Validation | Prediction set | ||||
---|---|---|---|---|---|---|---|
RMSEC | RMSECV | RMSEP | RPD | ||||
Original data-PCR | 0.269 6 | 0.882 0 | 0.279 8 | 0.873 1 | 0.332 8 | 0.820 2 | 2 |
MSC-S-G smoothing-FD-PCR | 0.261 9 | 0.888 6 | 0.270 0 | 0.888 6 | 0.262 5 | 0.884 0 | 3 |
MSC-S-G smoothing-SD-PCR | 0.240 3 | 0.906 2 | 0.247 7 | 0.909 8 | 0.238 6 | 0.913 8 | 3 |
Table 1 Preprocessing results of hyperspectral data based on PCR modeling
Models | Training set | Cross-Validation | Prediction set | ||||
---|---|---|---|---|---|---|---|
RMSEC | RMSECV | RMSEP | RPD | ||||
Original data-PCR | 0.269 6 | 0.882 0 | 0.279 8 | 0.873 1 | 0.332 8 | 0.820 2 | 2 |
MSC-S-G smoothing-FD-PCR | 0.261 9 | 0.888 6 | 0.270 0 | 0.888 6 | 0.262 5 | 0.884 0 | 3 |
MSC-S-G smoothing-SD-PCR | 0.240 3 | 0.906 2 | 0.247 7 | 0.909 8 | 0.238 6 | 0.913 8 | 3 |
Models | Training set | Cross-Validation | Prediction set | ||||
---|---|---|---|---|---|---|---|
RMSEC | RMSECV | RMSEP | RPD | ||||
MSC-S-G smoothing-SD-PCR | 0.240 3 | 0.906 2 | 0.247 7 | 0.909 8 | 0.238 6 | 0.913 8 | 3 |
MSC-S-G smoothing-SD-PLSR | 0.215 3 | 0.924 8 | 0.235 2 | 0.911 5 | 0.215 4 | 0.924 5 | 3 |
MSC-S-G smoothing-SD-SVR | 0.045 5 | 0.996 7 | 0.075 7 | 0.990 8 | 0.045 6 | 0.996 3 | 16 |
Table 2 Modeling results based on MSC-S-G smoothing-SD
Models | Training set | Cross-Validation | Prediction set | ||||
---|---|---|---|---|---|---|---|
RMSEC | RMSECV | RMSEP | RPD | ||||
MSC-S-G smoothing-SD-PCR | 0.240 3 | 0.906 2 | 0.247 7 | 0.909 8 | 0.238 6 | 0.913 8 | 3 |
MSC-S-G smoothing-SD-PLSR | 0.215 3 | 0.924 8 | 0.235 2 | 0.911 5 | 0.215 4 | 0.924 5 | 3 |
MSC-S-G smoothing-SD-SVR | 0.045 5 | 0.996 7 | 0.075 7 | 0.990 8 | 0.045 6 | 0.996 3 | 16 |
Models | Training set | Cross-Validation | Prediction set | ||||
---|---|---|---|---|---|---|---|
RMSEC | RMSECV | RMSEP | RPD | ||||
CARS-MSC-S-G smoothing-SD-SVR | 0.002 7 | 0.999 8 | 0.049 6 | 0.996 2 | 0.012 0 | 0.999 3 | 38 |
SPA-MSC-S-G smoothing-SD-SVR | 0.018 1 | 0.999 4 | 0.052 5 | 0.995 7 | 0.020 1 | 0.998 9 | 30 |
UVE-MSC-S-G smoothing-SD-SVR | 0.040 2 | 0.997 5 | 0.176 5 | 0.950 6 | 0.041 6 | 0.997 3 | 19 |
Table 3 Model results based on feature extraction algorithm
Models | Training set | Cross-Validation | Prediction set | ||||
---|---|---|---|---|---|---|---|
RMSEC | RMSECV | RMSEP | RPD | ||||
CARS-MSC-S-G smoothing-SD-SVR | 0.002 7 | 0.999 8 | 0.049 6 | 0.996 2 | 0.012 0 | 0.999 3 | 38 |
SPA-MSC-S-G smoothing-SD-SVR | 0.018 1 | 0.999 4 | 0.052 5 | 0.995 7 | 0.020 1 | 0.998 9 | 30 |
UVE-MSC-S-G smoothing-SD-SVR | 0.040 2 | 0.997 5 | 0.176 5 | 0.950 6 | 0.041 6 | 0.997 3 | 19 |
1 | PAN Y, ZHANG H, CHEN Y, et al. Applications of hyperspectral imaging technology combined with machine learning in quality control of traditional Chinese medicine from the perspective of artificial intelligence: a review[J]. Crit Rev Anal Chem, 2023, 29: 1-15. |
2 | BAI Z, HU X, TIAN J, et al. Rapid and nondestructive detection of sorghum adulteration using optimization algorithms and hyperspectral imaging[J].Food Chem, 2020, 30(331): 127-290. |
3 | 姚坤杉, 孙俊, 陈晨, 等. 基于高光谱技术的三七不同部位粉末的无损鉴别[J]. 光谱学与光谱分析, 2023, 43(7): 2027-2031. |
YAO K S, SUN J, CHEN C, et al. Nondestructive identification of powder from different parts of Panax pseudoginseng based on hyperspectral technique[J]. Spectrosc Spectral Anal, 2023, 43(7): 2027-2031. | |
4 | 高梁喨. 基于高光谱技术的柑橘品质检测研究[D]. 雅安: 四川农业大学, 2023. |
GAO L L. Research on citrus quality detection based on hyperspectral technology[D]. Ya'an: Sichuan Agricultural University, 2023. | |
5 | DE OLIVEIRA ZANUSO B, DE OLIVEIRA DOS SANTOS A R, MIOLA V F B, et al. Panax ginseng and aging related disorders: a systematic review[J]. Exp Gerontol, 2022, 161: 111731. |
6 | LEE I S, KANG K S, KIM S Y. Panax ginseng pharmacopuncture: current status of the research and future challenges[J]. Biomolecules, 2019, 10(1): 33. |
7 | 余江锋, 罗吉, 黄亿健, 等. 吉林省不同种类人参UPLC-PDA指纹图谱及化学模式识别研究[J]. 中药材, 2019, 42(4): 822-827. |
YU J F, LUO J, HUANG Y J, et al. UPLC-PDA fingerprinting and chemical pattern recognition of different species of ginseng in Jilin Province[J]. Chin Mater Med, 2019, 42(4): 822-827. | |
8 | 肖霞, 曹俊凯. 人参当归颗粒的薄层鉴别[J]. 中国实用医药, 2012, 7(9): 249-250. |
XIA X, CAO J K. Thin-layer identification of ginseng and angelica granules[J]. Chin Practical Med, 2012, 7(9): 249-250. | |
9 | ZHU H, LIN H, TAN J, et al. UPLC-QTOF/MS-based nontargeted metabolomic analysis of mountain-and garden-cultivated ginseng of different ages in northeast China[J]. Molecules, 2018, 24(1): 33. |
10 | ZHANG L, WANG P, LI S, et al. Differentiation of mountain- and garden-cultivated ginseng with different growth years using HS-SPME-GC-MS coupled with chemometrics[J]. Molecules, 2023, 28(5): 2016. |
11 | LEE B J, KIM H Y, LIM S R, et al. Discrimination and prediction of cultivation age and parts of Panax ginseng by Fourier-transform infrared spectroscopy combined with multivariate statistical analysis[J]. PLoS One, 2017, 12(10): e 0186664. |
12 | YANG S, SHIN Y S, HYUN S H, et al. NMR-based metabolic profiling and differentiation of ginseng roots according to cultivation ages[J].J Pharm Biomed Anal, 2012, 58: 19-26. |
13 | 刘秋安, 徐芳芳, 张欣, 等. 基于近红外光谱技术和分类与回归树算法建立天舒片崩解时间预测模型[J]. 中草药, 2021, 52(16): 4837-4843. |
LIU Q A, XU F F, ZHANG X, et al. Establishment of a disintegration time prediction model for Tianshu tablets based on near-infrared spectroscopy and classification and regression tree algorithms[J]. Chin Herbal Med, 2021, 52(16): 4837-4843. | |
14 | LI X, WEI Y, XU J, et al. SSC and pH for sweet assessment and maturity classification of harvested cherry fruit based on NIR hyperspectral imaging technology[J]. Postharvest Biol Technol, 2018, 143: 112-118. |
15 | ABDI H, WILLIAMS L J. Partial least squares methods: partial least squares correlation and partial least square regression[J]. Methods Mol Biol, 2013, 930: 549-579. |
16 | HEMMATEENEJAD B, MIRI R, ELYASI M. A segmented principal component analysis--regression approach to QSAR study of peptides[J]. J Theor Biol, 2012, 305: 37-44. |
17 | MCKEARNAN S B, VOCK D M, MARAI G E, et al. Feature selection for support vector regression using a genetic algorithm[J]. Biostatistics, 2023, 24(2): 295-308. |
18 | 傅晨, 王开军. 决定系数与相关系数相关系数辅助的LASSO回归[J]. 福建师范大学学报(自然科学版), 2024, 40(2): 57-63, 89. |
FU C, WANG K J. LASSO regression assisted by coefficient of determination and correlation coefficient[J]. J Fujian Norm Univ (Nat Sci Ed), 2024, 40(2): 57-63, 89. | |
19 | 徐萍, 米琪, 罗文秀, 等. 滇重楼皂苷近红外光谱快速定量分析模型建立[J/OL]. 中成药, 1-7[2024-05-20]. |
XU P, MI Q, LUO W X, et al. Modeling of near-infrared spectroscopy for rapid quantitative analysis of Dianthus annuus saponins[J/OL]. Proprietary Chin Med, 1-7[2024-05-20]. | |
20 | 陈露萍, 徐芳芳, 张欣, 等. 基于偏最小二乘法建立大株红景天片素片硬度近红外光谱预测模型[J]. 中草药, 2023, 54(8): 2446-2452. |
CHEN L P, XU F F, ZHANG X, et al. Establishment of a near-infrared spectral prediction model for the hardness of Rhodiola rosea tablets based on the partial least squares method[J]. Chin Herbal Med, 2023, 54(8): 2446-2452. | |
21 | LI H, LIANG Y, XU Q, et al. Key wavelengths screening using competitive adaptive reweighted sampling method for multivariate calibration[J]. Anal Chim Acta, 2009, 648(1): 77-84. |
22 | ZHU H, CHU B, ZHANG C, et al. Hyperspectral imaging for presymptomatic detection of tobacco disease with successive projections algorithm and machine-learning classifiers[J]. Sci Rep, 2017, 7(1): 4125. |
23 | HAN Q, WU H, CAI C, et al. An ensemble of Monte Carlo uninformative variable elimination for wavelength selection[J]. Anal Chim Acta, 2008, 612(2): 121-125. |
24 | YU H, LU J, ZHANG G. Continuous support vector regression for nonstationary streaming data[J]. IEEE Trans Cybern, 2022, 52(5): 3592-3605. |
25 | 刘子健, 顾佳盛, 周聪, 等. 基于高光谱成像技术的山楂产地判别研究[J]. 食品工业科技, 2024, 45(10): 282-291. |
LIU Z J, GU J S, ZHOU C, et al. Research on the origin discrimination of hawthorn based on hyperspectral imaging technology[J]. Food Ind Sci Technol, 2024, 45(10): 282-291. |
[1] | Han-Shui ZHANG, Ben-Yi GONG, Min-Lun NAN, Yu-Fang HE, Yu-Wei ZHAO, Cong-Mei WU, Yu-He YIN. Chemical Analysis of Sorghum Husk by UPLC-Q Exactive Plus-MS in Vitro Screening of Xanthine Oxidase Inhibitory Activity and Composition [J]. Chinese Journal of Applied Chemistry, 2023, 40(11): 1587-1594. |
[2] | Hong-Mei BI. Research Progress of Assembly of Phospholipid Tube in Vitro and Its Potential Application in the Field of Biology and Chemistry [J]. Chinese Journal of Applied Chemistry, 2023, 40(1): 40-51. |
[3] | HUANG Huiming, LI Shanshan, LI Haiming, WU Shuijin, LI Yueshen, LIN Hongtao, ZHENG Kaibin. Screening and Identification of Differential Proteins in Cymbopogon citratus Stems and Leaves by K-Means Clustering Analysis [J]. Chinese Journal of Applied Chemistry, 2020, 37(4): 455-463. |
[4] | ZHANG Chenglu, LI Yizheng, LI Jinchi, WANG Jing, WANG Huayu, GONG Rongqing. Synthesis of Two Novel 1,3-Selenazole Carbonyl Hydrazones and Their Specific Fluorescent Recognition Toward Acetate Ions [J]. Chinese Journal of Applied Chemistry, 2018, 35(2): 197-205. |
[5] | ZHANG Chenglu, LI Yizheng, LI Jinchi, WANG Jing, WANG Huayu, GONG Rongqing. Synthesis of Two Novel 1,3-Selenazole Carbonyl Hydrazones and Their Specific Fluorescent Recognition Toward Acetate Ions [J]. Chinese Journal of Applied Chemistry, 2018, 35(2): 0-0. |
[6] | HUANG Qi, SONG Haohan, WANG Xiao, PANG Lanfang, ZHOU Yanmei. Synthesis of a New Rhodamine-Based Probe for Selective Detection of Ni2+ in Aqueous Solution [J]. Chinese Journal of Applied Chemistry, 2017, 34(12): 1468-1473. |
[7] | ZHANG Chenglu, SUN Lijie, SONG Buer, GUO Yang, ZHAO Baocheng, TANG Jie, XI Huan. Synthesis and Application of Novel Tripod-type Benzimidazolium Compounds [J]. Chinese Journal of Applied Chemistry, 2015, 32(8): 873-883. |
[8] | ZHAO Yan1, LIU Jin-Ping2, ZHANG Lian-Xue1, CAI En-Bo1, GAO Yu-Gang1, LI Ping-Ya2*. Isolation and Identification of Several Xanthones and Anthraquinone from Pericarpium Garciniae Mangostanae [J]. Chinese Journal of Applied Chemistry, 2011, 28(02): 229-233. |
[9] | HE Zhong-Mei1*, ZONG Ying1, SUN Jia-Ming2, XIAO Feng-Yan3. Isolation and Identification of Several Flavonoids and Phenolic acids from Senecio scandens Buch.-Ham. [J]. Chinese Journal of Applied Chemistry, 2010, 27(12): 1486-1488. |
[10] | YANG Xiao-Rong*, XIANG Qing-Xiang, XIONG Jun-Ru, CHEN Gang. Reason of Difference on Fluorescence Spectra between Schisandra and Kadsura [J]. Chinese Journal of Applied Chemistry, 2009, 26(09): 1070-1074. |
[11] | Xu Hanying, Zhao Xiaojun. Spectrophotometric Determination of Furfural in Liqour [J]. Chinese Journal of Applied Chemistry, 1997, 0(3): 84-86. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||