Chinese Journal of Applied Chemistry ›› 2025, Vol. 42 ›› Issue (10): 1323-1334.DOI: 10.19894/j.issn.1000-0518.250188
• Full Papers • Previous Articles Next Articles
Yu LI1,2, Jiao MU3, Du-Jin WANG1,2, Guo-Ming LIU1,2(
)
Received:2025-05-08
Accepted:2025-08-05
Published:2025-10-01
Online:2025-10-29
Contact:
Guo-Ming LIU
About author:gmliu@iccas.ac.cnSupported by:CLC Number:
Yu LI, Jiao MU, Du-Jin WANG, Guo-Ming LIU. Probing the Glass Transition Temperature of Poly(vinyl butyral) Using Fluorescence Lifetime[J]. Chinese Journal of Applied Chemistry, 2025, 42(10): 1323-1334.
Add to citation manager EndNote|Ris|BibTeX
URL: http://yyhx.ciac.jl.cn/EN/10.19894/j.issn.1000-0518.250188
| [1] | BRIATICO-VANGOSA F, RINK M. Dilatometric behavior and glass transition in a styrene-acrylonitrile copolymer[J]. J Polym Sci B Polym Phys, 2005, 43(14): 1904-1913. |
| [2] | PIONTECK J. Determination of pressure dependence of polymer phase transitions by pVT analysis[J]. Polymers, 2018, 10(6): 578. |
| [3] | ZHENG Q J, ZHANG Y F, MONTAZERIAN M, et al. Understanding glass through differential scanning calorimetry[J]. Chem Rev, 2019, 119(13): 7848-7939. |
| [4] | ARANDIA I, MUGICA A, ZUBITUR M, et al. The complex amorphous phase in poly(butylene succinate-ran-butylene azelate) isodimorphic copolyesters[J]. Macromolecules, 2017, 50(4): 1569-1578. |
| [5] | CHEN H M, LIU G M, QIN Y P, et al. Structural transitions in solution-cast films of a new AABB type thiophene copolymer[J]. Macromolecules, 2016, 49(22): 8653-8660. |
| [6] | LUTKENHAUS J L, HRABAK K D, MCENNIS K, et al. Elastomeric flexible free-standing hydrogen-bonded nanoscale assemblies[J]. J Am Chem Soc, 2005, 127(49): 17228-17234. |
| [7] | CAO Z, ZHOU Q Z, JIE S Y, et al. High cis-1,4 hydroxyl-terminated polybutadiene-based polyurethanes with extremely low glass transition temperature and excellent mechanical properties[J]. Ind Eng Chem Res, 2016, 55(6): 1582-1589. |
| [8] | PIZZANELLI S, PREVOSTO D, LABARDI M, et al. Dynamics of poly(vinyl butyral) studied using dielectric spectroscopy and 1H NMR relaxometry[J]. Phys Chem Chem Phys, 2017, 19(47): 31804-31812. |
| [9] | KESSAIRI K, NAPOLITANO S, CAPACCIOLI S, et al. Molecular dynamics of atactic poly(propylene) investigated by broadband dielectric spectroscopy[J]. Macromolecules, 2007, 40(6): 1786-1788. |
| [10] | ELLISON C J, TORKELSON J M. Sensing the glass transition in thin and ultrathin polymer films via fluorescence probes and labels[J]. J Polym Sci B Polym Phys, 2002, 40(24): 2745-2758. |
| [11] | DEMAGGIO G B, FRIEZE W E, GIDLEY D W, et al. Interface and surface effects on the glass transition in thin polystyrene films[J]. Phys Rev Lett, 1997, 78(8): 1524-1527. |
| [12] | BÄUMCHEN O, MCGRAW J D, FORREST J A, et al. Reduced glass transition temperatures in thin polymer films: surface effect or artifact?[J]. Phys Rev Lett, 2012, 109(5): 055701. |
| [13] | MATTSSON J, FORREST J A, BÖRJESSON L. Quantifying glass transition behavior in ultrathin free-standing polymer films[J]. Phys Rev E, 2000, 62(4): 5187-5200. |
| [14] | FAKHRAAI Z, FORREST J A. Measuring the surface dynamics of glassy polymers[J]. Science, 2008, 319(5863): 600-604. |
| [15] | REITER G. Dewetting as a probe of polymer mobility in thin-films[J]. Macromolecules, 1994, 27(11): 3046-3052. |
| [16] | VIGNAUD G, CHEBIL M S, BAL J K, et al. Densification and depression in glass transition temperature in polystyrene thin films[J]. Langmuir, 2014, 30(39): 11599-11608. |
| [17] | GIERMANSKA J, BEN JABRALLAH S, DELORME N, et al. Direct experimental evidences of the density variation of ultrathin polymer films with thickness[J]. Polymer, 2021, 228: 123934. |
| [18] | KEDDIE J L, JONES R A L, CORY R A. Size-dependent depression of the glass-transition temperature in polymer-films[J]. Europhys Lett, 1994, 27(1): 59-64. |
| [19] | FUKAO K, MIYAMOTO Y. Glass transitions and dynamics in thin polymer films: dielectric relaxation of thin films of polystyrene[J]. Phys Rev E, 2000, 61(2): 1743-1754. |
| [20] | SAMBATH K, LIU X, WAN Z, et al. Potassium ion fluorescence probes: structures, properties and bioimaging[J]. ChemPhotoChem, 2020, 5(4): 317-325. |
| [21] | TANG Y, PEI F, LU X, et al. Recent advances on activatable NIR-Ⅱ fluorescence probes for biomedical imaging[J]. Adv Optical Mater, 2019, 7(21): 1900917. |
| [22] | ZHAO H, HU W B, FAN Q L. Two-photon fluorescence probe in bio-sensor[J]. Prog Chem, 2022, 34(4): 815-823. |
| [23] | 厉圆圆, 卢修联, 刘欣雨, 等. 具有红色荧光性质的掺硒碳点在生物传感和抗菌中的多功能应用[J]. 无机化学学报, 2024, 40(1): 173-181. |
| LI Y Y, LU X L, LIU X Y, et al. Selenium-doped carbon dots with red fluorescence properties have multi-functional applications in biosensing and antibacterial fields[J]. J Inorg Chem, 2024, 40(1): 173-181. | |
| [24] | SACHER W D, CHEN F D, MORADI-CHAMEH H, et al. Implantable photonic neural probes for light-sheet fluorescence brain imaging[J]. Neurophotonics, 2021, 8(2): 025003. |
| [25] | DING P S, WAHN H, CHEN F D, et al. Photonic neural probe enabled microendoscopes for light-sheet light-field computational fluorescence brain imaging[J]. Neurophotonics, 2024, 11(Suppl 1): S11503. |
| [26] | SEO Y, PARK K S, HA T, et al. A smart near-infrared fluorescence probe for selective detection of Tau fibrils in Alzheimer's disease[J]. ACS Chem Neurosci, 2016, 7(11): 1474-1481. |
| [27] | 陈宇航, 李潇. 具有聚集诱导发光效应的荧光探针在生物医学中的应用[J]. 生物医学工程研究, 2021, 40(1): 94-99. |
| CHEN Y H, LI X. The application of fluorescent probes with aggregation-induced emission effect in biomedicine[J]. Biomed Eng Res, 2021, 40(1): 94-99. | |
| [28] | REISCH A, DIDIER P, RICHERT L, et al. Collective fluorescence switching of counterion-assembled dyes in polymer nanoparticles[J]. Nat Commun, 2014, 5: 4089. |
| [29] | SCHRAIVOGEL D, KUHN T M, RAUSCHER B, et al. High-speed fluorescence image-enabled cell sorting[J]. Science, 2022, 375(6578): 315-320. |
| [30] | 闫婉露, 苏伟涛, 陈大钦. 荧光寿命成像技术及其在生物医学领域的应用[J]. 发光学报, 2025, 46(1): 46-59. |
| YAN W L, SU W T, CHEN D Q. Fluorescence lifetime imaging technology and its applications in the field of biomedicine[J]. J Luminescence, 2025, 46(1): 46-59. | |
| [31] | MORAWETZ H. Studies of synthetic-polymers by nonradiative energy-transfer[J]. Science, 1988, 240(4849): 172-176. |
| [32] | QIN L L, LI L L, SHA Y, et al. Conformational transitions of polymer chains in solutions characterized by fluorescence resonance energy transfer[J]. Polymers, 2018, 10: 1007. |
| [33] | YANG S G, XIE H J, SABA H, et al. Fluorescence microscopy tracking of dyes, nanoparticles and quantum dots during growth of polymer spherulites[J]. Polymer, 2020, 191: 122246. |
| [34] | YANG S G, WEI Z Z, CSEH L, et al. Bowls, vases and goblets-the microcrockery of polymer and nanocomposite morphology revealed by two-photon optical tomography[J]. Nat Commun, 2021, 12: 5054. |
| [35] | XU J, DING L, CHEN J, et al. Sensitive characterization of the influence of substrate interfaces on supported thin films[J]. Macromolecules, 2014, 47(18): 6365-6372. |
| [36] | ELLISON C J, TORKELSON J M. The distribution of glass-transition temperatures in nanoscopically confined glass formers[J]. Nat Mater, 2003, 2(10): 695-700. |
| [37] | PRIESTLEY R D, ELLISON C J, BROADBELT L J, et al. Structural relaxation of polymer glasses at surfaces, interfaces and in between[J]. Science, 2005, 309(5733): 456-459. |
| [38] | BAGLAY R R, ROTH C B. Local glass transition temperature Tg(z) of polystyrene next to different polymers: hard vs. soft confinement[J]. J Chem Phys, 2017, 146: 203307. |
| [39] | KIM S, ROTH C B, TORKELSON J M. Effect of nanoscale confinement on the glass transition temperature of free-standing polymer films: novel, self-referencing fluorescence method[J]. J Polym Sci B Polym Phys, 2008, 46(24): 2754-2764. |
| [40] | RITTIGSTEIN P, TORKELSON J M. Polymer-nanoparticle interfacial interactions in polymer nanocomposites: confinement effects on glass transition temperature and suppression of physical aging[J]. J Polym Sci B Polym Phys, 2006, 44(20): 2935-2943. |
| [41] | KIM S, TORKELSON J M. Distribution of glass transition temperatures in free-standing, nanoconfined polystyrene films: a test of de gennes' sliding motion mechanism[J]. Macromolecules, 2011, 44(11): 4546-4553. |
| [42] | ELLISON C J, KIM S D, HALL D B, et al. Confinement and processing effects on glass transition temperature and physical aging in ultrathin polymer films: novel fluorescence measurements[J]. Eur Phys J E, 2002, 8(2): 155-166. |
| [43] | CHOI W, LEE W, YU Y J, et al. Comparison of glass transition dynamics between fluorophore-labeled and -doped flexible poly(vinyl chloride) plasticized by ultra-small branched star poly(ε-caprolactone)[J]. Polymer, 2021, 234(8): 124240. |
| [44] | BAO S P, WU Q H, QIN W, et al. Sensitive and reliable detection of glass transition of polymers by fluorescent probes based on AIE luminogens[J]. Polym Chem, 2015, 6(18): 3537-3542. |
| [45] | 刘英军, 朱玉梅, 王宇, 等. 聚苯乙烯分子链构象与其薄膜的玻璃化转变行为[J]. 中国科学(化学), 2014, 44(12): 1986-1995. |
| LIU Y J, ZHU Y M, WANG Y, et al. Investigation on polystyrene chain conformation and glass transition behavior of its thin film[J]. Sci China: Chem, 2014, 44(12): 1986-1995. | |
| [46] | 赵江, 郑中礼. 一种聚合物薄膜的玻璃化转变温度的测定方法: 中国, 201010286357.2[P]. 2011-02-09. |
| ZHAO J, ZHENG Z L. A method for determining the glass transition temperature of a polymer film: CN, 201010286357.2[P]. 2011-02-09. | |
| [47] | 马会民. 光学探针与传感分析[M]. 北京: 化学工业出版社, 2020. |
| MA H M. Optical probes and sensing analysis[M]. Beijing: Chemical Industry Press, 2020. | |
| [48] | BORST J W, VISSER A. Fluorescence lifetime imaging microscopy in life sciences[J]. Meas Sci Technol, 2010, 21(10): 102002. |
| [49] | NISHIJIMA Y. Fluorescence methods in polymer science[J]. J Polym Sci, C Polym Symp, 1970, 31(1): 353-373. |
| [50] | TANAKA K, TATEISHI Y, OKADA Y, et al. Interfacial mobility of polymers on inorganic solids[J]. J Phys Chem B, 2009, 113(14): 4571-4577. |
| [51] | SHIMOMURA S, INUTSUKA M, TAJIMA K, et al. Stabilization of polystyrene thin films by introduction of a functional end group[J]. Polym J, 2016, 48(9): 949-953. |
| [52] | MUNDRA M K, ELLISON C J, RITTIGSTEIN P, et al. Fluorescence studies of confinement in polymer films and nanocomposites: glass transition temperature, plasticizer effects, and sensitivity to stress relaxation and local polarity[J]. Eur Phys J Spec Top, 2007, 141: 143-151. |
| [53] | URBAN F K. Ellipsometer measurement of thickness and optical-properties of thin absorbing films[J]. Appl Surf Sci, 1988, 33/34: 934-941. |
| [54] | GESANG T, FANTER D, HOPER R, et al. Comparative film thickness determination by atomic-force microscopy and ellipsometry for ultrathin polymer-films[J]. Surf Interface Anal, 1995, 23(12): 797-808. |
| [55] | PARK J, CHO Y J, CHEGAL W, et al. A review of thin-film thickness measurements using optical methods[J]. Int J Precis Eng Manuf, 2024, 25(8): 1725-1737. |
| [56] | CHEN X, LV C Z, LI Y H, et al. Precise characterization of the sequence distribution of poly(vinyl butyral) (PVB) by 2D-NMR and isotope enrichment[J]. Macromolecules, 2023, 56(8): 3036-3049. |
| [57] | KULKARNI B, QUTUB S, KHASHAB N M, et al. Rhodamine B-conjugated fluorescent block copolymer micelles for efficient chlorambucil delivery and intracellular imaging[J]. Acs Omega, 2023, 8(25): 22698-22707. |
| [58] | RAO H J, QI W, SU R X, et al. Mechanistic and conformational studies on the interaction of human serum albumin with rhodamine B by NMR, spectroscopic and molecular modeling methods[J]. J Mol Liq, 2020, 316: 113889. |
| [59] | LUAN W W, XU J M, ZENG Z X, et al. Kinetics of polyvinyl butyral (PVB) synthesis reaction catalyzed by deep eutectic solvent[J]. Can J Chem Eng, 2023, 101(10): 5903-5916. |
| [60] | GUPTA S, SEETHAMRAJU S, RAMAMURTHY P C, et al. Polyvinylbutyral based hybrid organic/inorganic films as a moisture barrier material[J]. Ind Eng Chem Res, 2013, 52(12): 4383-4394. |
| [1] | Wang Peihua, An Lijia, Jiang Bingzheng. On the Glass Transition of Binary Blends of Polystyrene with Different Molecular Weight [J]. Chinese Journal of Applied Chemistry, 1994, 0(4): 107-110. |
| [2] | Li Min, Li Hongyun, Zhou Enle, Xu Jiping. SYNTHESIS AND STRUCTURAL STUDIES OF SIDE CHAIN LIQUID CRYSTALLINE POLYACRYLATES CONTAINING PARA-NITRO AZOBENZENE—Ⅱ.THE EFFECT OF MOLECULAR STRUCTURE ON Tg [J]. Chinese Journal of Applied Chemistry, 1993, 0(4): 43-46. |
| [3] | Li Binyao, Zhuang Guoqing, Li Gang, Li Hongyun, Zhang Yan, Chen Tianlu. MISCIBILITY OF PHENOPHTHALEIN POLYETHER-ETHERSULFONE AND POLYETHER-ETHER-KETONE BLENDS [J]. Chinese Journal of Applied Chemistry, 1993, 0(3): 116-117. |
| Viewed | ||||||
|
Full text |
|
|||||
|
Abstract |
|
|||||