Chinese Journal of Applied Chemistry ›› 2021, Vol. 38 ›› Issue (5): 524-545.DOI: 10.19894/j.issn.1000-0518.210174
• Review • Previous Articles Next Articles
ZHAO Yue, MENG Xiang-Qin, YAN Xi-Yun*, FAN Ke-Long*
Received:
2021-04-07
Accepted:
2021-04-12
Published:
2021-05-01
Online:
2021-07-01
Supported by:
CLC Number:
ZHAO Yue, MENG Xiang-Qin, YAN Xi-Yun, FAN Ke-Long. Nanozyme: A New Type of Biosafety Material[J]. Chinese Journal of Applied Chemistry, 2021, 38(5): 524-545.
Add to citation manager EndNote|Ris|BibTeX
URL: http://yyhx.ciac.jl.cn/EN/10.19894/j.issn.1000-0518.210174
[1] 唐东升, 崔建勋, 梁刚豪, 等. 发展生物安全材料学,筑牢中国国家安全城墙[J]. 应用化学, 2020, 37(9): 985-993. TANG D S, CUI J X, LIANG G H, et al. Developing biosafety materials science and building the national security wall of China[J]. Chinese J Appl Chem, 2020, 37(9): 985-993. [2] LIU P, HAN L, WANG F, et al. Sensitive colorimetric immunoassay of Vibrio parahaemolyticus based on specific nonapeptide probe screening from a phage display library conjugated with MnO2 nanosheets with peroxidase-like activity[J]. Nanoscale, 2018, 10(6): 2825-2833. [3] LIU L, LIU J, HUANG H, et al. A quantitative foam immunoassay for detection of Escherichia coli O157∶H7 based on bimetallic nanocatalyst-gold platinum[J]. Microchem J, 2019, 148: 702-707. [4] YAO S, ZHAO C, LIU Y, et al. Colorimetric immunoassay for the detection of Staphylococcus aureus by using magnetic carbon dots and sliver nanoclusters as o-phenylenediamine-oxidase mimetics[J]. Food Anal Method, 2020, 13(4): 833-838. [5] LEE J W, SON J, YOO K M, et al. Characterization of the antioxidant activity of gold@platinum nanoparticles[J]. RSC Adv, 2014, 4(38): 19824-19830. [6] CHEN Z, YIN J J, ZHOU Y T, et al. Dual enzyme-like activities of iron oxide nanoparticles and their implication for diminishing cytotoxicity[J]. ACS Nano, 2012. 6(5): 4001-4012. [7] MATTER M T, FURER L A, STARSICH F H L, et al. Engineering the bioactivity of flame-made ceria and ceria/bioglass hybrid nanoparticles[J]. ACS Appl Mater Interfaces, 2019, 11(3): 2830-2839. [8] QIN T, MA R N, YIN Y Y, et al. Catalytic inactivation of influenza virus by iron oxide nanozyme[J]. Theranostics, 2019, 9(23): 6920-6935. [9] LIU Y, LIN A, LIU J, et al. Enzyme-responsive mesoporous ruthenium for combined chemo-photothermal therapy of drug-resistant bacteria[J]. ACS Appl Mater Interfaces, 2019, 11(30): 26590-26606. [10] SAMETBAND M, SHUKLA S, MENINGHER T, et al. Effective multi-strain inhibition of influenza virus by anionic gold nanoparticles[J]. MedChemComm, 2011, 2(5): 421-423. [11] BHUSHAN B, GOPINATH P. Antioxidant nanozyme: a facile synthesis and evaluation of the reactive oxygen species scavenging potential of nanoceria encapsulated albumin nanoparticles[J]. J Mater Chem B, 2015, 3(24): 4843-4852. [12] LEHAR S M, PILLOW T, XU M, et al. Novel antibody-antibiotic conjugate eliminates intracellular S.aureus[J]. Nature, 2015, 527(7578): 323-328. [13] ZHANG D, ZHAO Y X, GAO Y J, et al. Anti-bacterial and in vivo tumor treatment by reactive oxygen species generated by magnetic nanoparticles[J]. J Mater Chem B, 2013, 1(38): 5100-5107. [14] WU S J, DUAN N, QIU Y T, et al. Colorimetric aptasensor for the detection of Salmonella enterica serovar typhimurium using ZnFe2O4-reduced graphene oxide nanostructures as an effective peroxidase mimetics[J]. Int J Food Microbiol, 2017, 261: 42-48. [15] WANG S Q, DENG W F, YANG L, et al. Copper-based metal organic framework nanoparticles with peroxidase-like activity for sensitive colorimetric detection of staphylococcus aureus[J]. ACS Appl Mater Interfaces, 2017, 9(29): 24440-24445. [16] ZHANG L, CHEN Y T, CHENG N, et al. Ultrasensitive detection of viable Enterobacter sakazakii by a continual cascade nanozyme biosensor[J]. Anal Chem, 2017, 89(19): 10194-10200. [17] MUMTAZ S, WANG S, HUSSAIN S Z, et al. Dopamine coated Fe3O4 nanoparticles as enzyme mimics for the sensitive detection of bacteria[J]. Chem Commun, 2017, 53(91): 12306-12308. [18] ZENG C X, LU N, WEN Y L, et al. Engineering nanozymes using DNA for catalytic regulation[J]. ACS Appl Mater Interfaces, 2019, 11(2): 1790-1799. [19] DEHGHANI Z, HOSSEINI M, MOHAMMADNEJAD J, et al. New colorimetric DNA sensor for detection of Campylobacter jejuni in milk sample based on peroxidase-like activity of gold/platinium nanocluster[J]. ChemistrySelect, 2019, 4(40): 11687-11692. [20] ZHANG L, QI Z N, ZOU Y, et al. Engineering DNA-nanozyme interfaces for rapid detection of dental bacteria[J]. ACS Appl Mater Interfaces, 2019, 11(34): 30640-30647. [21] World Health Organization (WHO). Food Safety[R]. WHO: Geneva, Switzerland 2020. [22] SU H, ZHAO H, QIAO F, et al. Colorimetric detection of Escherichia coli O157∶H7 using functionalized Au@Pt nanoparticles as peroxidase mimetics[J]. Analyst, 2013, 138(10): 3026-3031. [23] HAN J J, ZHANG L, HU L M, et al. Nanozyme-based lateral flow assay for the sensitive detection of Escherichia coli O157∶H7 in milk[J]. J Dairy Sci, 2018, 101(7): 5770-5779. [24] SHAN S, LIU D F, GUO Q, et al. Sensitive detection of Escherichia coli O157∶H7 based on cascade signal amplification in ELISA[J]. J Dairy Sci, 2016, 99(9): 7025-7032. [25] LUO K, HU L M, GUO Q, et al. Comparison of 4 label-based immunochromatographic assays for the detection of Escherichia coli O157∶H7 in milk[J]. J Dairy Sci, 2017, 100(7): 5176-5187 [26] COLE M B, JONES M V and HOLYOAK C. The effect of pH, salt concentration and temperature on the survival and growth of Listeria monocytogenes[J]. J Appl Bacteriol, 1990, 69(1): 63-72. [27] AUVOLAT A, BESSE N G. The challenge of enumerating Listeria monocytogenes in food[J]. Food Microbiol, 2016, 53(Pt B): 135-49. [28] LIU Y, WANG J, SONG X, et al. Colorimetric immunoassay for Listeria monocytogenes by using core gold nanoparticles, silver nanoclusters as oxidase mimetics, and aptamer-conjugated magnetic nanoparticles[J]. Microchim Acta, 2018, 185(8):. [29] SCALLAN E, HOEKSTRA R M, ANGULO F J, et al. Foodborne illness acquired in the united states-major pathogens[J]. Emerg Infect Dis, 2011, 17(1): 7-15. [30] GLISSON J R. Bacterial respiratory diseases of poultry[J]. Poult Sci, 1998, 77(8): 1139-1142. [31] CHATTOPADHYAY S, DEY S K, MAITI P K, et al. A novel tool for capture and detection of typhoid fever using Ag-labeled nanocomposites[J]. J Biol Inorg Chem, 2014, 19(8): 1377-1384. [32] DAS R, DHIMAN A, KAPIL A, et al. Aptamer-mediated colorimetric and electrochemical detection of Pseudomonas aeruginosa utilizing peroxidase-mimic activity of gold nanozyme [J]. Anal Bioanal Chem, 2019, 411(6): 1229-1238. [33] LIU B, LIU J. Accelerating peroxidase mimicking nanozymes using DNA[J]. Nanoscale, 2015, 7(33): 13831-13835. [34] PARK J Y, JEONG H Y, KIM M I, et al. Colorimetric detection system for Salmonella typhimurium based on peroxidase-like activity of magnetic nanoparticles with DNA aptamers[J]. J. Nanomater, 2015, 2015: 527126 [35] SELWITZ R H, ISMAIL A I, PITTS N B. Dental caries[J]. Lancet, 2007, 369(9555): 51-59. [36] TAKAHASHI N, NYVAD B. The role of bacteria in the caries process: ecological perspectives[J]. J Dent Res, 2011, 90(3): 294-303. [37] COURVALIN P. Predictable and unpredictable evolution of antibiotic resistance[J]. J Intern Med, 2008, 264(1): 4-16. [38] LEVY S B, MARSHALL B. Antibacterial resistance worldwide: causes, challenges and responses[J]. Nat Med, 2004, 10(12 Suppl): S122-9. [39] WILLYARD C. Drug-resistant bacteria ranked[J]. Nature, 2017, 543(7643): 15. [40] BROWNE K, CHAKRABORTY S, CHEN R X, et al. A new era of antibiotics: the clinical potential of antimicrobial peptides[J]. Int J Mol Sci, 2020, 21(19): 23. [41] BUFFET-BATAILLON S, TATTEVIN P, BONNAURE-MALLET M, et al. Emergence of resistance to antibacterial agents: the role of quaternary ammonium compounds-a critical review[J]. Int J Antimicrob Agents, 2012, 39(5): 381-389. [42] CHERNOUSOVA S, EPPLE M. Silver as antibacterial agent: ion, nanoparticle, and metal[J]. Angew Chemie Int Ed, 2013, 52(6): 1636-1653. [43] ZHOU G, SHI Q S, HUANG X M, et al. The three bacterial lines of defense against antimicrobial agents[J]. Int J Mol Sci, 2015, 16(9): 21711-21733. [44] GUPTA A, DAS R, TONGA G Y, et al. Charge-switchable nanozymes for bioorthogonal imaging of biofilm-associated infections[J]. ACS Nano, 2018, 12(1): 89-94. [45] ZHENG Y, LIU W, QIN Z, et al. Mercaptopyrimidine-conjugated gold nanoclusters as nanoantibiotics for combating multidrug-resistant superbugs[J]. Bioconjugate Chem, 2018, 29(9): 3094-3103. [46] WANG Z, DONG K, LIU Z, et al. Activation of biologically relevant levels of reactive oxygen species by Au/g-C3N4 hybrid nanozyme for bacteria killing and wound disinfection[J]. Biomaterials, 2017, 113: 145-157. [47] FANG F C. Antimicrobial actions of reactive oxygen species[J]. mBio, 2011. 2(5): 6. [48] MA W, ZHANG T, LI R, et al. Bienzymatic synergism of vanadium oxide nanodots to efficiently eradicate drug-resistant bacteria during wound healing in vivo[J]. J Colloid Interface Sci, 2020, 559: 313-323. [49] TAO Y, JU E, REN J, et al. Bifunctionalized mesoporous silica-supported gold nanoparticles: intrinsic oxidase and peroxidase catalytic activities for antibacterial applications[J]. Adv Mater, 2015, 27(6): 1097-1104. [50] GAO L, GIGLIO K M, NELSON J L, et al. Ferromagnetic nanoparticles with peroxidase-like activity enhance the cleavage of biological macromolecules for biofilm elimination[J]. Nanoscale, 2014. 6(5): 2588-2593. [51] LI C, SUN Y, LI X, et al. Bactericidal effects and accelerated wound healing using Tb4O7 nanoparticles with intrinsic oxidase-like activity[J]. J Nanobiotechnol, 2019. 17. [52] GU Y, HUANG Y, QIU Z, et al. Vitamin B-2 functionalized iron oxide nanozymes for mouth ulcer healing[J]. Sci China: Life Sci, 2020, 63(1): 68-79. [53] SHAN J, LI X, YANG K, et al. Efficient bacteria killing by Cu2WS4 nanocrystals with enzyme-like properties and bacteria-binding ability[J]. ACS Nano, 2019, 13(12): 13797-13808. [54] STANKIC S, SUMAN S, HAQUE F, et al. Pure and multi metal oxide nanoparticles: synthesis, antibacterial and cytotoxic properties[J]. J Nanobiotechnol, 2016, 14: 20. [55] XI J Q, WEI G, AN L F, et al. Copper/carbon hybrid nanozyme: tuning catalytic activity by the copper state for antibacterial therapy[J]. Nano Lett, 2019, 19(11): 7645-7654. [56] YU N, CAI T, SUN Y, et al. A novel antibacterial agent based on AgNPs and Fe3O4 loaded chitin microspheres with peroxidase-like activity for synergistic antibacterial activity and wound-healing[J]. Int J Pharm, 2018, 552(1/2): 277-287. [57] SHI S, WU S, SHEN Y, et al. Iron oxide nanozyme suppresses intracellular Salmonella Enteritidis growth and alleviates infection in vivo[J]. Theranostics, 2018, 8(22): 6149-6162. [58] SHEN Y, XIAO Y, ZHANG S, et al. Fe3O4 nanoparticles attenuated Salmonella infection in chicken liver through reactive oxygen and autophagy via PI3K/Akt/mTOR signaling[J]. Front Physiol, 2020, 10: 1580. [59] PANDIAN C J, PALANIVEL R, BALASUNDARAM U. Green synthesized nickel nanoparticles for targeted detection and killing of S. typhimurium[J]. J Photochem Photobiol B, 2017, 174: 58-69. [60] XI J, WEI G, WU Q, et al. Light-enhanced sponge-like carbon nanozyme used for synergetic antibacterial therapy[J]. Biomater Sci, 2019, 7(10): 4131-4141. [61] YIN W, YU J, LV F, et al. Functionalized nano-MoS2 with peroxidase catalytic and near-infrared photothermal activities for safe and synergetic wound antibacterial applications[J]. ACS Nano, 2016, 10(12): 11000-11011. [62] WANG X W, ZHONG X Y, BAI L X, et al. Ultrafine titanium monoxide (TiO1+x) nanorods for enhanced sonodynamic therapy[J]. J Am Chem Soc, 2020, 142(14): 6527-6537. [63] SUN D, PANG X, CHENG Y, et al. Ultrasound-switchable nanozyme augments sonodynamic therapy against multidrug-resistant bacterial infection[J]. ACS Nano, 2020, 14(2): 2063-2076. [64] FLEMMING H C, WINGENDER J. The biofilm matrix[J]. Nat Rev Microbiol, 2010, 8(9): 623-633. [65] LEBEAUX D, GHIGO J M, BELOIN C. Biofilm-related infections: bridging the gap between clinical management and fundamental aspects of recalcitrance toward antibiotics[J]. Microbiol Mol Biol Rev, 2014, 78(3): 510-543. [66] DAVIES D. Understanding biofilm resistance to antibacterial agents[J]. Nat Rev Drug Discovery, 2003, 2(2): 114-122. [67] GAO L, LIU Y, KIM D, et al. Nanocatalysts promote Streptococcus mutans biofilm matrix degradation and enhance bacterial killing to suppress dental caries in vivo[J]. Biomaterials, 2016, 101: 272-284. [68] TOUMEY C. Quick lessons on environmental nanotech [J]. Nat Nanotechnol, 2015, 10(7): 566-567. [69] HWANG G, PAULA A J, HUNTER E E, et al. Catalytic antimicrobial robots for biofilm eradication[J]. Sci Robot, 2019, 4(29): eaaw2388. [70] HSU C L, LI Y J, JIAN H J, et al. Green synthesis of catalytic gold/bismuth oxyiodide nanocomposites with oxygen vacancies for treatment of bacterial infections[J]. Nanoscale, 2018, 10(25): 11808-11819. [71] WU R, CHONG Y, FANG G, et al. Synthesis of Pt hollow nanodendrites with enhanced peroxidase-like activity against bacterial infections: implication for wound healing[J]. Adv Funct Mater, 2018, 28(28): 1801484. [72] SUN H, GAO N, DONG K, et al. Graphene quantum dots-band-aids used for wound disinfection[J]. ACS Nano, 2014, 8(6): 6202-6210. [73] QIU H, PU F, LIU Z, et al. Hydrogel-based artificial enzyme for combating bacteria and accelerating wound healing[J]. Nano Res, 2020, 13(2): 496-502. [74] NATALIO F, ANDRE R, HARTOG A F, et al. Vanadium pentoxide nanoparticles mimic vanadium haloperoxidases and thwart biofilm formation[J]. Nat Nanotechnol, 2012, 7(8): 530-535. [75] HERGET K, HUBACH P, PUSCH S, et al. Haloperoxidase mimicry by CeO2-x nanorods combats biofouling[J]. Adv Mater, 2017, 29(4): 1603823. [76] LIU Y, NAHA P C, HWANG G, et al. Topical ferumoxytol nanoparticles disrupt biofilms and prevent tooth decay in vivo via intrinsic catalytic activity[J]. Nat Commun, 2018, 9(1): 2920. [77] UMAPATHI A, NAGARAJU N P, MADHYASTHA H, et al. Highly efficient and selective antimicrobial isonicotinylhydrazide-coated polyoxometalate-functionalized silver nanoparticles[J]. Colloids Surf B, 2019, 184: 110522. [78] NIU J S, SUN Y H, WANG F M, et al. Photomodulated nanozyme used for a gram-selective antimicrobial[J]. Chem Mat, 2018, 30(20): 7027-7033. [79] SANG Y, LI W, LIU H, et al. Construction of nanozyme-hydrogel for enhanced capture and elimination of bacteria[J]. Adv Funct Mater, 2019, 29(22): 1900518. [80] HUO M, WANG L, ZHANG H, et al. Construction of single-iron-atom nanocatalysts for highly efficient catalytic antibiotics[J]. Small, 2019, 15(31): 1901834. [81] XI J, ZHANG J, QIAN X, et al. Using a visible light-triggered pH switch to activate nanozymes for antibacterial treatment[J]. RSC Adv, 2020, 10(2): 909-913. [82] LIU X, YAN Z, ZHANG Y, et al. Two-dimensional metal-organic framework/enzyme hybrid nanocatalyst as a benign and self-activated cascade reagent for in vivo wound healing[J]. ACS Nano, 2019, 13(5): 5222-5230. [83] HUANG X W, WEI J J, LIU T, et al. Silk fibroin-assisted exfoliation and functionalization of transition metal dichalcogenide nanosheets for antibacterial wound dressings[J]. Nanoscale, 2017, 9(44): 17193-17198. [84] XU B, WANG H, WANG W, et al. A single-atom nanozyme for wound disinfection applications[J]. Angew Chem Int Ed, 2019, 58(15): 4911-4916. [85] CHEN S, QUAN Y, YU Y L, et al. Graphene quantum dot/silver nanoparticle hybrids with oxidase activities for antibacterial application[J]. ACS Biomater Sci Eng, 2017, 3(3): 313-321. [86] XU Z, QIU Z, LIU Q, et al. Converting organosulfur compounds to inorganic polysulfides against resistant bacterial infections[J]. Nat Commun, 2018, 9: 3713. [87] HELLMUTH J, MUCCINI C, COLBY D J, et al. Central nervous system safety during brief analytic treatment interruption of antiretroviral therapy within 4 human immunodeficiency virus remission trials: an observational study in acutely treated people living with human immunodeficiency virus[J]. Clin Infect Dis, 2020: ciaa1344. [88] YANG N, HUANG Y X, DING G S, et al. In situ generation of Prussian blue with potassium ferrocyanide to improve the sensitivity of chemiluminescence immunoassay using magnetic nanoparticles as label[J]. Anal Chem, 2019. 91(7): 4906-4912. [89] LONG L, LIU J B, LU K S, et al. Highly sensitive and robust peroxidase-like activity of Au-Pt core/shell nanorod-antigen conjugates for measles virus diagnosis[J]. J Nanobiotechnol, 2018, 16(1): 46. [90] LI A Y, LONG L, LIU F S, et al. Antigen-labeled mesoporous silica-coated Au-core Pt-shell nanostructure: a novel nanoprobe for highly efficient virus diagnosis[J]. J Biol Eng, 2019, 13(1): 87. [91] AHMED S R, KIM J, SUZUKI T, et al. Detection of influenza virus using peroxidase-mimic of gold nanoparticles[J]. Biotechnol Bioeng, 2016, 113(10): 2298-2303. [92] WEERATHUNGE P, RAMANATHAN R, TOROK V A, et al. Ultrasensitive colorimetric detection of murine norovirus using nanozyme aptasensor[J]. Anal Chem, 2019, 91(5): 3270-3276. [93] GAO Z Q, LI Y Y, ZHANG X B, et al. Ultrasensitive electrochemical immunosensor for quantitative detection of HBeAg using Au@Pd/MoS2@MWCNTs nanocomposite as enzyme-mimetic labels[J]. Biosens Bioelectron, 2018, 102: 189-195. [94] SHAO K, ZHANG C J, YE S Y, et al. Near-infrared electrochemiluminesence biosensor for high sensitive detection of porcine reproductive and respiratory syndrome virus based on cyclodextrin-grafted porous Au/PtAu nanotube[J]. Sens Actuator B-Chem, 2017, 240: 586-594. [95] ZHAN L, LI C M, WU W B, et al. A colorimetric immunoassay for respiratory syncytial virus detection based on gold nanoparticles-graphene oxide hybrids with mercury-enhanced peroxidase-like activity[J]. Chem Commun, 2014, 50(78): 11526-11528. [96] OH S, KIM J, TRAN V T, et al. Magnetic nanozyme-linked immunosorbent assay for ultrasensitive influenza a virus detection[J]. ACS Appl Mater Interfaces, 2018, 10(15): 12534-12543. [97] LIU D, JU C, HAN C, et al. Nanozyme chemiluminescence paper test for rapid and sensitive detection of SARS-CoV-2 antigen[J]. Biosens Bioelectron, 2021, 173: 112817. [98] AHMED S R, KIM J, SUZUKI T, et al. Enhanced catalytic activity of gold nanoparticle-carbon nanotube hybrids for influenza virus detection[J]. Biosens Bioelectron, 2016, 85: 503-508. [99] AHMED S R, CORREDOR J C, NAGY E, et al. Amplified visual immunosensor integrated with nanozyme for ultrasensitive detection of avian influenza virus[J]. Nanotheranostics, 2017, 1(3): 338-345. [100] ZHANG T, TIAN F, LONG L, et al. Diagnosis of rubella virus using antigen-conjugated Au@Pt nanorods as nanozyme probe[J]. Int J Nanomed, 2018, 13: 4795-4805. [101] WANG Y Z, ZHU G X, QI W J, et al. A versatile quantitation platform based on platinum nanoparticles incorporated volumetric bar-chart chip for highly sensitive assays[J]. Biosens Bioelectron, 2016, 85: 777-784. [102] DUAN D M, FAN K L, ZHANG D X, et al. Nanozyme-strip for rapid local diagnosis of Ebola[J]. Biosens Bioelectron, 2015, 74: 134-141. [103] ELECHIGUERRA J L, BURT J L, MORONES J R, et al. Interaction of silver nanoparticles with HIV-1[J]. J Nanobiotechnol, 2005, 3: 6-6. [104] MARTINEZ-AVILA O, HIJAZI K, MARRADI M, et al. Gold Manno-glyconanoparticies: multivalent systems to block HIV-1 gp120 binding to the lectin DC-SIGN[J]. Chem-Eur J, 2009, 15(38): 9874-9888. [105] RYOO S R, JANG H, KIM K S, et al. Functional delivery of DNAzyme with iron oxide nanoparticles for hepatitis C virus gene knockdown[J]. Biomaterials, 2012, 33(9): 2754-2761. [106] LEVINA A S, REPKOVA M N, ISMAGILOV Z R, et al. Efficient inhibition of human influenza A virus by oligonucleotides electrostatically fixed on polylysine-containing TiO2 nanoparticles[J]. Russ J Bioorg Chem, 2014, 40(2): 179-184. [107] EE M Y, YANG J A, JUNG H S, et al. Hyaluronic acid-gold nanoparticle/interferon alpha complex for targeted treatment of hepatitis C virus infection[J]. ACS Nano, 2012, 6(11): 9522-9531. [108] JANG H, MIN D H. Spherically-clustered porous Au-Ag alloy nanoparticle prepared by partial inhibition of galvanic replacement and its application for efficient multimodal therapy[J]. ACS Nano, 2015, 9(3): 2696-2703. [109] XIANG D X, ZHENG Y, DUAN W, et al. Inhibition of A/Human/Hubei/3/2005 (H3N2) influenza virus infection by silver nanoparticles in vitro and in vivo[J]. Int J Nanomed, 2013, 8: 4103-4113. [110] ALLAWADHI P, KHURANA A, ALLWADHI S, et al. Nanoceria as a possible agent for the management of COVID-19[J]. Nano Today, 2020, 35: 100982. [111] NGUYEN Q H, KIM M I. Nanomaterial-mediated paper-based biosensors for colorimetric pathogen detection[J]. TrAC Trends Anal Chem, 2020, 132: 116038. [112] LARA H H, AYALA-NUNEZ N V, IXTEPAN-TURRENT L, et al. Mode of antiviral action of silver nanoparticles against HIV-1[J]. J Nanobiotechnol, 2010, 8: 1. [113] FAYAZ A M, AO Z, GIRILAL M, et al. Inactivation of microbial infectiousness by silver nanoparticles-coated condom: a new approach to inhibit HIV- and HSV-transmitted infection[J]. Int J Nanomed, 2012, 7: 5007-5018. [114] CHEN H W, HUANG C Y, LIN S Y, et al. Synthetic virus-like particles prepared via protein corona formation enable effective vaccination in an avian model of coronavirus infection[J]. Biomaterials, 2016, 106: 111-118. [115] TAO W, ZIEMER K S, GILL H S. Gold nanoparticle-M2e conjugate coformulated with CpG induces protective immunity against influenza A virus[J]. Nanomedicine, 2014, 9(2): 237-252. [116] XIAO Y, SHI M, QIU Q, et al. Piperlongumine suppresses dendritic cell maturation by reducing production of reactive oxygen species and has therapeutic potential for rheumatoid arthritis[J]. J Immunol, 2016, 196(12): 4925-4934. [117] QIN T, MA S, MIAO X Y, et al. Mucosal vaccination for influenza protection enhanced by catalytic immune-adjuvant[J]. Adv Sci, 2020, 7(18): 2000771. [118] SAPTARSHI S R, DUSCHL A, LOPATA A L. Interaction of nanoparticles with proteins: relation to bio-reactivity of the nanoparticle[J]. J Nanobiotechnol, 2013, 11: 26. [119] KUSUMOPUTRO S, TSENG S, TSE J, et al. Potential nanoparticle applications for prevention, diagnosis, and treatment of COVID-19[J]. View, 2020, 1(4): 20200105. [120] JUNG R, KIM Y, KIM H S, et al. Antimicrobial properties of hydrated cellulose membranes with silver nanoparticles[J]. J Biomater Sci, Polym Ed, 2009, 20(3): 311-324. [121] WANG Z, XIA T, LIU S. Mechanisms of nanosilver-induced toxicological effects: more attention should be paid to its sublethal effects[J]. Nanoscale, 2015, 7(17): 7470-7481. [122] CAI T T, FANG G, TIAN X, et al. Optimization of antibacterial efficacy of noble-metal-based core-shell nanostructures and effect of natural organic matter [J]. ACS Nano, 2019, 13(11): 12694-12702. [123] MAHARJAN A, DIKSHIT P K, GUPTA A, et al. Catalytic activity of magnetic iron oxide nanoparticles for hydrogen peroxide decomposition: optimization and characterization[J]. J Chem Technol Biotechnol, 2020, 95(9): 2495-2508. [124] HUANG L, CHEN J X, GAN L F, et al. Single-atom nanozymes[J]. Sci Adv, 2019. 5(5): eaav5490. [125] PEI J, ZHAO R, MU X, et al. Single-atom nanozymes for biological applications[J]. Biomater Sci, 2020, 8(23): 6428-6441. [126] KHULBE K, KARMAKAR K, GHOSH S, et al. Nanoceria-based phospholipase-mimetic cell membrane disruptive antibiofilm agents[J]. ACS Appl Bio Materials, 2020, 3(7): 4316-4328. [127] UGRU M M, SHESHADRI S, JAIN D, et al. Insight into the composition and surface corona reliant biological behaviour of quercetin engineered nanoparticles[J]. Colloids Surf A, 2018, 548: 1-9. [128] TEGEDER P, FREITAG M, CHEPIGA K M, et al. N-Heterocyclic carbene-modified Au-Pd alloy nanoparticles and their application as biomimetic and heterogeneous catalysts[J]. Chem-Eur J, 2018, 24(70): 18682-18688. [129] FAN L, TIAN Y, LOU D, et al. Catalytic gold-platinum alloy nanoparticles and a novel glucose oxidase mimic with enhanced activity and selectivity constructed by molecular imprinting[J]. Anal Methods, 2019, 11(36): 4586-4592. [130] HU X, SARAN A, HOU S, et al. Au@PtAg core/shell nanorods: tailoring enzyme-like activities via alloying[J]. RSC Adv, 2013, 3(17): 6095-6105. [131] KOCA F D, YILMAZ D D, ONMAZ N E, et al. Green synthesis of allicin based hybrid nanoflowers with evaluation of their catalytic and antimicrobial activities[J]. Biotechnol Lett, 2020, 42(9): 1683-1690. [132] ALAJMI M F, AHMED J, HUSSAIN A, et al. Green synthesis of Fe3O4 nanoparticles using aqueous extracts of Pandanus odoratissimus leaves for efficient bifunctional electro-catalytic activity[J]. Appl Nanosci, 2018, 8(6): 1427-1435. [133] KORA A J. Plant Arabinogalactan gum synthesized palladium nanoparticles: characterization and properties[J]. J Inorg Organomet Polym Mater, 2019. 29(6): 2054-2063. [134] WANG X, WAN R, GU H, et al. Well-water-dispersed N-trimethyl chitosan/Fe3O4 hybrid nanoparticles as peroxidase mimetics for quick and effective elimination of bacteria[J]. J Biomater Sci, Polym Ed, 2020, 31(8): 969-983. [135] YOU J G, WANG Y T, TSENG W L. Adenosine-related compounds as an enhancer for peroxidase-mimicking activity of nanomaterials: application to sensing of heparin level in human plasma and total sulfate glycosaminoglycan content in synthetic cerebrospinal fluid[J]. ACS Appl Mater Interfaces, 2018, 10(44): 37846-37854. [136] RAJENDRAKUMAR S K, REVURI V, SAMIDURAI M, et al. Peroxidase-mimicking nanoassembly mitigates lipopolysaccharide-induced endotoxemia and cognitive damage in the brain by impeding inflammatory signaling in macrophages[J]. Nano Lett, 2018, 18(10): 6417-6426. [137] ZHANG A, PAN S, ZHANG Y, et al. Carbon-gold hybrid nanoprobes for real-time imaging, photothermal/photodynamic and nanozyme oxidative therapy[J]. Theranostics, 2019, 9(12): 3443-3458. [138] LIU L, WANG X, ZHU S, et al. Controllable targeted accumulation of fluorescent conjugated polymers on bacteria mediated by a saccharide bridge[J]. Chem Mat, 2020, 32(1): 438-447. [139] HUSSAIN S, JOO J, KANG J, et al. Antibiotic-loaded nanoparticles targeted to the site of infection enhance antibacterial efficacy[J]. Nat Biomed Eng, 2018, 2(2): 95-103. [140] WANG X P, GONG A, LUO W H, et al. Remote activation of nanoparticulate biomimetic activity by light triggered pH-jump[J]. Chem Commun, 2018, 54(62): 8641-8644. [141] LI T, QIU H, LIU N, et al. Construction of self-activated cascade metal-organic framework/enzyme hybrid nanoreactors as antibacterial agents[J]. Colloids Surf, B, 2020, 191: 111001. [142] TO E E, VLAHOS R, LUONG R, et al. Endosomal NOX2 oxidase exacerbates virus pathogenicity and is a target for antiviral therapy[J]. Nat Commun, 2017, 8: 69. [143] CHEN G, XU M, ZHAO S, et al. Pompon-like RuNPs-Based theranostic nanocarrier system with stable photoacoustic imaging characteristic for accurate tumor detection and efficient phototherapy guidance[J]. ACS Appl Mater Interfaces, 2017, 9(39): 33645-33659. |
[1] | Li-Juan YAN, Tian-He GAO, Dong-Jian SHI, Ming-Qing CHEN. Preparation and Properties of Eugenol/Modified Polyvinyl Alcohol Antibacterial Composite Films [J]. Chinese Journal of Applied Chemistry, 2023, 40(4): 527-535. |
[2] | Yu-Jie MA, Ying-Xin ZHANG, Huan-Yan DAI, Zhi-Min XU, Bing HAN. Preparation and Properties of 3D Printed nHA/PEEK-AgNPs Composite Porous Scaffolds [J]. Chinese Journal of Applied Chemistry, 2023, 40(4): 536-545. |
[3] | Yu-Zhu CHEN, Si-Si LIU, Meng-Meng ZHANG, Xiang-De LIN, Dong-Dong ZENG. Polyurethane Dressing Based on Antibacterial Chitosan/Carboxymethyl Cellulose Composite Drug Coating [J]. Chinese Journal of Applied Chemistry, 2023, 40(2): 252-260. |
[4] | Jia-He WANG, Da-Yong LIU, Wei LIU, Lin WANG, Biao DONG. Research Progress on Photocatalytic Antibacterial Application of TiO2 Nano Materials [J]. Chinese Journal of Applied Chemistry, 2022, 39(4): 629-646. |
[5] | Xiao-Ming XIE, Jia-Qi ZHANG. Hydrogen Bond Interaction Driven Procyanidine Assembly into Underwater Adhesive with Antibacterial Activity [J]. Chinese Journal of Applied Chemistry, 2022, 39(10): 1533-1542. |
[6] | YANG Jia-Qiang,WU Xue-Jiao, ZHOU Xu-Rong, DENG Ling, YANG Hong. Synthesis and Antibacterial Activities of Osthole Ester Derivatives [J]. Chinese Journal of Applied Chemistry, 2021, 38(8): 917-922. |
[7] | CUI Min-Hui, ZHOU Hui-Ling, TANG Dong-Sheng, XIAO Hai-Hua. Biosafety Materials for Bioterrorism Attacks and Biological Warfare [J]. Chinese Journal of Applied Chemistry, 2021, 38(5): 467-481. |
[8] | MA Yi-Ming, ZHOU Xiao, TIAN Yun-Qing, YANG Jing, ZHANG Lei. Research Progress of Biosafety Materials and Technology of Genetic Resource Preservation [J]. Chinese Journal of Applied Chemistry, 2021, 38(5): 482-497. |
[9] | CAI Man-Ying, LIAO Yu-Hui, XU Wei, ZHOU Dong-Fang. Research Progress on Biosafety Materials for the Prevention and Control of the Coronavirus Disease 2019 [J]. Chinese Journal of Applied Chemistry, 2021, 38(5): 498-509. |
[10] | XIE Zi-Xu, ZHANG Peng-Fei, WANG Xing. Developing New Stereochemistry Antimicrobial Strategy to Advance Biosafety Materials [J]. Chinese Journal of Applied Chemistry, 2021, 38(5): 510-523. |
[11] | LIU Hui, LIU Xiao, CAO Yuan-Qiao, LIU Ming, LIU Ya-Dong, HAN Miao-Miao, JI Sheng-Xiang. Research Progress on Amino Acid-Based Antimicrobial Polymers [J]. Chinese Journal of Applied Chemistry, 2021, 38(5): 559-571. |
[12] | CAO Ling-Zhi, WANG Zhao-Shuo, WANG Bei. Application of Nano Biomaterials in Antiviral Vaccine Adjuvant [J]. Chinese Journal of Applied Chemistry, 2021, 38(5): 572-581. |
[13] | LIN Qiu-Peng, ZHANG Zhu-Ying, SHI Dong-Jian, PEI Ze-Jun, CHEN Ming-Qing, NI Zhong-Bin. Preparation and Properties of Sustained Release Chitosan/Chlorhexidine Acetate Composite Microspheres [J]. Chinese Journal of Applied Chemistry, 2021, 38(12): 1599-1611. |
[14] | ZHOU Chao, SHENG Cheng-Ju, WEN Lin-Lin. Preparation of Imidazolium Salt-based Poly(ionic liquids) Antibacterial Agent and Its Application in Hydrogel Dressing [J]. Chinese Journal of Applied Chemistry, 2021, 38(1): 51-59. |
[15] | TANG Dongsheng, CUI Jianxun, LIANG Ganghao, YU Yingjie, ZHOU Huiling, WEI Dengshuai, XIAO Haihua. Developing Biosafety Materials Science and Building the National Security Wall of China [J]. Chinese Journal of Applied Chemistry, 2020, 37(9): 985-993. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||