[1] HAMPTON T. Report reveals scope of US antibiotic resistance threat[J]. J Am Med Assoc, 2013, 310(16): 1661-1663. [2] MAKABENTA J M V, NABAQY A, LI C H, et al. Nanomaterial-based therapeutics for antibiotic-resistant bacterial infections[J]. Nat Rev Microbiol, 2021, 19(1): 23-36. [3] LEBEAUX D, CHAUHAN A, RENDUELES O, et al. From in vitro to in vivo models of bacterial biofilm-related infections[J]. Pathogens, 2013, 2(2): 288-356. [4] SONG J, JANG J. Antimicrobial polymer nanostructures: synthetic route, mechanism of action and perspective[J]. Adv Colloid Interface Sci, 2014, 203: 37-50. [5] 孙振龙, 闫顺杰, 周容涛, 等. 基于抗菌肽的智能型抗菌涂层研究进展[J]. 应用化学, 2020, 37(8): 865-876. SUN Z L, YAN S J, ZHOU R T, et al. Recent progress in the development of smart coatings based on antimicrobial peptides[J]. Chinese J Appl Chem, 2020, 37(8): 865-876. [6] GLINEL K, THEBAULT P, HUMBLOT V, et al. Antibacterial surfaces developed from bio-inspired approaches[J]. Acta Biomater, 2012, 8(5): 1670-1684. [7] ONG Z Y, WIRADHARMA N, YANG Y Y. Strategies employed in the design and optimization of synthetic antimicrobial peptide amphiphiles with enhanced therapeutic potentials[J]. Adv Drug Deliv Rev, 2014, 78: 28-45. [8] WHITESIDES G M, GRZYBOWSKI B. Self-assembly at all scales[J]. Science, 2002, 295(5564): 2418-2421. [9] ULIJN R V, SMITH A M. Designing peptide based nanomaterials[J]. Chem Soc Rev, 2008, 37(4): 664-675. [10] WANG Y, XU H, ZHANG X. Tuning the amphiphilicity of building blocks: controlled self-assembly and disassembly for functional supramolecular materials[J]. Adv Mater, 2009, 21(28): 2849-2864. [11] UMERSKA A, CASSISA V, BASTIAT G, et al. Synergistic interactions between antimicrobial peptides derived from plectasin and lipid nanocapsules containing monolaurin as a cosurfactant against Staphylococcus aureus[J]. Int J Nanomedicine, 2017, 12: 5687-5699. [12] LI L L, AN H W, PENG B, et al. Self-assembled nanomaterials: design principles, the nanostructural effect, and their functional mechanisms as antimicrobial or detection agents[J]. Mater Horizons, 2019, 6(9): 1794-1811. [13] DI Y P. Antimicrobial peptides in host defense against drug-resistant bacterial and viral infections[J]. Curr Med Chem, 2020, 27(9): 1385-1386. [14] WAGHU F H, GOPI L, BARAI R S, et al. CAMP: collection of sequences and structures of antimicrobial peptides[J]. Nucleic Acids Res, 2014, 42(D1): D1154-D1158. [15] DING X K, DUAN S, DING X J, et al. Versatile antibacterial materials: an emerging arsenal for combatting bacterial pathogens[J]. Adv Funct Mater, 2018, 28(40): 1802140. [16] ZOU P, CHEN W T, SUN T, et al. Recent advances: peptides and self-assembled peptide-nanosystems for antimicrobial therapy and diagnosis[J]. Biomater Sci, 2020, 8(18): 4975-4996. [17] LEIGH T, FERNANDEZ-TRILLO P. Helical polymers for biological and medical applications[J]. Nat Rev Chem, 2020, 4(6): 291-310. [18] XIONG M, LEE M W, MANSBACH R A, et al. Helical antimicrobial polypeptides with radial amphiphilicity[J]. PNAS, 2015, 112(43): 13155-13160. [19] BROGDEN K A. Antimicrobial peptides: pore formers or metabolic inhibitors in bacteria?[J]. Nat Rev Microbiol, 2005, 3(3): 238-250. [20] JIANG Z, VASIL A I, HALE J D, et al. Effects of net charge and the number of positively charged residues on the biological activity of amphipathic alpha-helical cationic antimicrobial peptides[J]. Biopolymers, 2008, 90(3): 369-383. [21] WEHKAMP J, FELLERMANN K, HERRLINGER K R, et al. Mechanisms of disease: defensins in gastrointestinal diseases[J]. Nat Clin Pract Gastroenterol Hepatol, 2005, 2(9): 406-415. [22] SHARMA H, NAGARAJ R. Antimicrobial activity of human beta-defensin 4 analogs: insights into the role of disulfide linkages in modulating activity[J]. Peptides, 2012, 38(2): 255-265. [23] MOHAMED M F, ABDELKHALEK A, SELEEM M N. Evaluation of short synthetic antimicrobial peptides for treatment of drug-resistant and intracellular Staphylococcus aureus[J]. Sci Rep, 2016, 6: 29707. [24] CHOW H Y, ZHANG Y, MATHESON E, et al. Ligation technologies for the synthesis of cyclic peptides[J]. Chem Rev, 2019, 119(17): 9971-10001. [25] RASHAD A A. Click chemistry for cyclic peptide drug design[J]. Methods Mol Biol, 2019, 2001: 133-145. [26] RIAHIFARD N, MOZAFFARI S, ALDAKHIL T, et al. Design, synthesis, and evaluation of amphiphilic cyclic and linear peptides composed of hydrophobic and positively-charged amino acids as antibacterial agents[J]. Molecules, 2018, 23(10): 2722. [27] STRIEKER M, TANOVIC A, MARAHIEL M A. Nonribosomal peptide synthetases: structures and dynamics[J]. Curr Opin Struct Biol, 2010, 20(2): 234-240. [28] GAUDELLI N M, LONG D H, TOWNSEND C A. β-Lactam formation by a non-ribosomal peptide synthetase during antibiotic biosynthesis[J]. Nature, 2015, 520(7547): 383-387. [29] LIU Y, DING S, SHEN J, et al. Nonribosomal antibacterial peptides that target multidrug-resistant bacteria[J]. Nat Prod Rep, 2019, 36(4): 573-592. [30] CHAKRABORTY P, GAZIT E. Amino acid based self-assembled nanostructures: complex structures from remarkably simple building blocks[J]. Chem Nano Mat, 2018, 4(8): 730-740. [31] UCHIDA M, KLEM M T, ALLEN M, et al. Biological containers: protein cages as multifunctional nanoplatforms[J]. Adv Mater, 2007, 19(8): 1025-1042. [32] CAVALLI S, ALBERICIO F, KROS A. Amphiphilic peptides and their cross-disciplinary role as building blocks for nanoscience[J]. Chem Soc Rev, 2010, 39(1): 241-263. [33] TU R S, MARULLO R, PYNN R, et al. Cooperative DNA binding and assembly by a bZip peptide-amphiphile[J]. Soft Matter, 2010, 6(5): 1035-1044. [34] LI L L, XU J H, QI G B, et al. Core-shell supramolecular gelatin nanoparticles for adaptive and “on-demand” antibiotic delivery[J]. ACS Nano, 2014, 8(5): 4975-4983. [35] RECHES M, GAZIT E. Formation of closed-cage nanostructures by self-assembly of aromatic dipeptides[J]. Nano Lett, 2004, 4(4):581-585. [36] STEPHANOPOULOS N, ORTONY J H, STUPP S I. Self-assembly for the synthesis of functional biomaterials[J]. Acta Mater, 2013, 61(3): 912-930. [37] KE P C, SANI M A, DING F, et al. Implications of peptide assemblies in amyloid diseases[J]. Chem Soc Rev, 2017, 46(21): 6492-6531. [38] AMIT M, CHENG G, HAMLEY I W, et al. Conductance of amyloid β based peptide filaments: structure-function relations[J]. Soft Matter, 2012, 8(33): 8690-8696. [39] IVNITSKI D, AMIT M, SILBERBUSH O, et al. The strong influence of structure polymorphism on the conductivity of peptide fibrils[J]. Angew Chem Int Ed, 2016, 55(34): 9988-9992. [40] AMIT M, YURAN S, GAZIT E, et al. Tailor-made functional peptide self-assembling nanostructures[J]. Adv Mater, 2018, 30(41): e1707083. [41] MANLUNG M, YI K, YUAN G, et al. Aromatic-aromatic interactions induce the self-assembly of pentapeptidic derivatives in water to form nanofibers and supramolecular hydrogels[J]. J Am Chem Soc, 2010, 132(8):2719-2728. [42] JAYAWARNA V, ALI M, JOWITT T A, et al. Nanostructured hydrogels for three-dimensional cell culture through self-assembly of fluorenyl methoxycarbonyl dipeptides[J]. Adv Mater, 2006, 18(5): 611-614. [43] FICHMAN G, GUTERMAN T, ADLER-ABRAMOVICH L, et al. Synergetic functional properties of two-component single amino acid-based hydrogels[J]. CrystEngComm, 2015, 17(42): 8105-8112. [44] ZHU K, HOU D, FEI Y, et al. Thermosensitive hydrogel interface switching from hydrophilic lubrication to infection defense[J]. ACS Appl Bio Mater, 2019, 2(8): 3582-3590. [45] LIU L, XU K, WANG H, et al. Self-assembled cationic peptide nanoparticles as an efficient antimicrobial agent[J]. Nat Nanotechnol, 2009, 4(7): 457-463. [46] LEI R, HOU J, CHEN Q, et al. Self-assembling myristoylated human alpha-defensin 5 as a next-generation nanobiotics potentiates therapeutic efficacy in bacterial infection[J]. ACS Nano, 2018, 12(6): 5284-5296. [47] LI L L, MA H L, QI G B, et al. Pathological-condition-driven construction of supramolecular nanoassemblies for bacterial infection detection[J]. Adv Mater, 2016, 28(2): 254-262. [48] QI G B, ZHANG D, LIU F H, et al. An “on-site transformation” strategy for treatment of bacterial infection[J]. Adv Mater, 2017, 29(36): 1703461. [49] FLEMMING H C, WINGENDER J, SZEWZYK U, et al. Biofilms: an emergent form of bacterial life[J]. Nat Rev Microbiol, 2016, 14(9): 563-575. [50] JU X, CHEN J, ZHOU M, et al. Combating Pseudomonas aeruginosa biofilms by a chitosan-PEG-peptide conjugate via changes in assembled structure[J]. ACS Appl Mater Interfaces, 2020, 12(12): 13731-13738. [51] REIGHARD K P, HILL D B, DIXON G A, et al. Disruption and eradication of P.aeruginosa biofilms using nitric oxide-releasing chitosan oligosaccharides[J]. Biofouling, 2015, 31(9-10): 775-787. [52] JARDELEZA C, FOREMAN A, BAKER L, et al. The effects of nitric oxide on Staphylococcus aureus biofilm growth and its implications in chronic rhinosinusitis[J]. Int Forum Allergy Rhinol, 2011, 1(6): 438-444. [53] TANG R, JIANG F, WEN J, et al. Managing bacterial biofilms with chitosan-based polymeric nitric oxides: inactivation of biofilm bacteria and synergistic effects with antibiotics[J]. J Bioact Compat Polym, 2016, 31(4): 393-410. [54] JENAL U, REINDERS A, LORI C. Cyclic di-GMP: second messenger extraordinaire[J]. Nat Rev Microbiol, 2017, 15(5): 271-284. [55] FEI Y, WU J, AN H W, et al. Identification of new nitric oxide-donating peptides with dual biofilm eradication and antibacterial activities for intervention of device-related infections[J]. J Med Chem, 2020, 63(17): 9127-9135. [56] CAMPOY E, COLOMBO M I. Autophagy in intracellular bacterial infection[J]. Biochim Biophys Acta, 2009, 1793(9): 1465-1477. [57] CAI Q, FEI Y, AN H W, et al. Macrophage-instructed intracellular Staphylococcus aureus killing by targeting photodynamic dimers[J]. ACS Appl Mater Interfaces, 2018, 10(11): 9197-9202. |