[1] LEHN J M. Cryptates: inclusion complexes of macropolycyclic receptor molecules[J]. Pure Appl Chem, 1978, 50: 871-892. [2] ANGELOVA A, ANGELOV B, MUTAFCHIEVA R, et al. Self-assembled multicompartment liquid crystalline lipid carriers for protein, peptide, and nucleic acid drug delivery[J]. Acc Chem Res, 2011, 44: 147-156. [3] KUMAR D K, STEED J W. Supramolecular gel phase crystallization:orthogonal self-assembly under non-equilibrium conditions[J]. Chem Soc Rev, 2014, 43(7): 2080-2088. [4] LI J C, PU K Y. Development of organic semiconducting materials for deep-tissue optical imaging, phototherapy and photoactivation[J]. Chem Soc Rev, 2019, 48(1): 38-71. [5] HEMBURY G A, BOROVKOV V V, INOUE Y. Chirality-sensing supramolecular systems[J]. Chem Rev, 2008, 108(1): 1-73. [6] 樊晔, 韩贻陈, 夏咏梅, 等. 共轭亚油酸与海藻酸钠囊泡化自组装 纳米容器及其药物缓释性能[J]. 应用化学, 2018, 35(12): 1478-1484. FAN Y, HAN Y C, XIA Y M, et al. Investigationon self assembly of nanocontainers by vesiculation of conjugated linoleic acidand sodium alginate and their drug delivery behavior[J]. Chinese J Appl Chem, 2018, 35(12): 1478-1484. [7] DONCOM K E B, BLACKMAN L D, WRIGHT D B, et al. Dispersity effects in polymer self-assemblies:a matter of hierarchical control[J]. Chem Soc Rev, 2017, 46(14): 4119-4134. [8] MARTIN R B. Comparisons of indefinite self-association models[J]. Chem Rev, 1996, 96(8): 3043-3064. [9] SMULDERS M M J, NIEUWENHUIZEN M M L, DE GREEF T F A, et al. How to distinguish isodesmic from cooperative supramolecular polymerisation[J]. Chem Eur J, 2010, 16(1): 362-367. [10] SKILLMAN K M, MA C I, FREMONT D H,et al. The unusual dynamics of parasite actin result from isodesmic polymerization[J]. Nat Commun, 2013, 4: 2285. [11] SMULDERS M M J, SCHENNING A P H J, MEIJER E W. Insight into the mechanisms of cooperative self-assembly:the “sergeants-and-soldiers” principle of chiral and achiral C3-symmetrical discotic triamides[J]. J Am Chem Soc, 2008, 130(2): 606-611. [12] WAGNER W, WEHNER M, STEPANENKO V, et al. Supramolecular block copolymers by seeded living polymerization of perylene bisimides[J]. J Am Chem Soc, 2019, 141(30): 12044-12054. [13] OGI S, SUGIYASU K, MANNA S, et al. Living supramolecular polymerization realized through a biomimetic approach[J]. Nat Chem, 2014, 6(3): 188-195. [14] LIU M, ZHANG L, WANG T. Supramolecular chirality in self-assembled systems[J]. Chem Rev, 2015, 115(15): 7304-7397. [15] LEHN J M. Supramolecular chemistry:where from? where to?[J]. Chem Soc Rev, 2017, 46(9): 2378-2379. [16] ZHANG X, WANG C. Supramolecular amphiphiles[J]. Chem Soc Rev, 2010, 40(1): 94-101. [17] BRUNSVELD L, FOLMER B J B, MEIJER E W, et al. Supramolecular polymers[J]. Chem Rev, 2001, 101(12): 4071-4097. [18] DE GREEF T F A, SMULDERS M M J, WOLFFS M, et al. Supramolecular polymerization[J]. Chem Rev, 2009, 109(11): 5687-5754. [19] MABESOONE M F J, MARKVOORT A J, BANNO M, et al. Competing interactions in hierarchical porphyrin self-assembly introduce robustness in pathway complexity[J]. J Am Chem Soc, 2018, 140(25): 7810-7819. [20] YANO K, ITOH Y, ARAOKA F, et al. Nematic-to-columnar mesophase transition by in situ supramolecular polymerization[J]. Science, 2019, 363(6423): 161-165. [21] WANG H C, ZHANG Y G, CHEN Y F, et al. Living supramolecular polymerization of an aza-BODIPY dye controlled by a hydrogen-bond accepting triazole unit introduced by click chemistry[J]. Angew Chem Int Ed, 2020, 59: 5185-5192. [22] SHEN Z C, JIANG Y Q, WANG T Y, et al. Symmetry breaking in the supramolecular gels of an achiral gelator exclusively driven by π-π stacking[J]. J Am Chem Soc, 2015, 137(51): 16109-16115. [23] VALERA J S, GÓMEZ R, SÁNCHEZ L. Tunable energy landscapes to control pathway complexity in self-assembled n-heterotriangulenes: living and seeded supramolecular polymerization[J]. Small, 2018, 14(3): 1-9. [24] SUN Y, LI S, ZHOU Z X, et al. Alanine-based chiral metallogels via supramolecular coordination complex platforms: metallogelation induced chirality transfer[J]. J Am Chem Soc, 2018, 140(9): 3257-3263. [25] DENG S Q, MO X J, CAI S L, et al. Homochiral Cu(I) coordination polymers based on a double-stranded helical building block from achiral ligands: symmetry-breaking crystallization, photophysical and photocatalytic properties[J]. Inorg Chem, 2019, 58 (21): 14660-14666. [26] VAN DER WEEGEN R, TEUNISSEN A J P, MEIJER E W. Directing the self-assembly behaviour of porphyrin-based supramolecular systems[J]. Chem Eur J, 2017, 23(15): 3773-3783. [27] WEN X B, NOWAK-KROL A, NAGLER O, et al. Tetrahydroxy-perylene bisimide embedded in zinc oxide thin film as electron transporting layer for high performance non-fullerene organic solar cells[J]. Angew Chem Int Ed, 2019, 58(37): 13051-13055. [28] QIU J B, JIANG S J, GUO H Y, et al. An AIE and FRET-based BODIY sensor with large stoke shift: novel pH probe exhibiting application in CO2-3 detection and living cell imaging[J]. Dyes Pigm, 2018, 157: 351-358. [29] LIU Y C, XU C Y, TENG L L, et al.pH stimulus-disaggregated BODIPY: an activated photodynamic/photothermal sensitizer applicable to tumor ablation[J]. Chem Commun, 2020, 56(13): 1956-1959. [30] CHEN X, LIU L, HUO M, et al. Direct synthesis of polymer nanotubes by aqueous dispersion polymerization of a cyclodextrin/styrene complex[J]. Angew Chem Int Ed, 2017, 56(52): 16541-16545. [31] ZENG W, ZHANG W, LI X Y, et al. Hexabenzocoronene graphitic nanocoils appended with crown ethers:supramolecular chirality induced by host-guest interaction[J]. Chem Eur J, 2019, 25(72): 16692-16698. |