Chinese Journal of Applied Chemistry ›› 2021, Vol. 38 ›› Issue (5): 559-571.DOI: 10.19894/j.issn.1000-0518.210065
• Review • Previous Articles Next Articles
LIU Hui1,2, LIU Xiao1,2, CAO Yuan-Qiao1,2, LIU Ming1, LIU Ya-Dong1, HAN Miao-Miao1*, JI Sheng-Xiang1,2*
Received:
2021-02-08
Accepted:
2021-03-09
Published:
2021-05-01
Online:
2021-07-01
Supported by:
CLC Number:
LIU Hui, LIU Xiao, CAO Yuan-Qiao, LIU Ming, LIU Ya-Dong, HAN Miao-Miao, JI Sheng-Xiang. Research Progress on Amino Acid-Based Antimicrobial Polymers[J]. Chinese Journal of Applied Chemistry, 2021, 38(5): 559-571.
Add to citation manager EndNote|Ris|BibTeX
URL: http://yyhx.ciac.jl.cn/EN/10.19894/j.issn.1000-0518.210065
[1] BLASKOVICH M A T. The fight against antimicrobial resistance is confounded by a global increase in antibiotic usage[J]. ACS Infect Dis, 2018, 4(6): 868-870. [2] JASOVSKY D, LITTMANN J, ZORZET A, et al. Antimicrobial resistance-a threat to the world′s sustainable development[J]. Ups J Med Sci, 2016, 121(3): 159-164. [3] OCHSNER U A, SUN X, JARVIS T, et al. Aminoacyl-tRNA synthetases: essential and still promising targets for new anti-infective agents[J]. Expert Opin Invest Drugs, 2007, 16(5): 573-593. [4] SANTAJIT S, INDRAWATTANA N. Mechanisms of antimicrobial resistance in ESKAPE pathogens[J]. BioMed Res Int, 2016: 2475067. [5] HUTNICK M A, POKORSKI J K. Polymeric interventions for microbial infections: a review[J]. Mol Pharm, 2018, 15(8): 2910-2921. [6] GANEWATTA M S, TANG C. Controlling macromolecular structures towards effective antimicrobial polymers[J]. Polymer, 2015, 63: A1-A29. [7] 孙振龙, 闫顺杰, 周容涛, 等. 基于抗菌肽的智能型抗菌涂层研究进展[J]. 应用化学, 2020, 37(8): 865-876. SUN Z L, YAN S J, ZHOU R T, et al. Recent Progress in the development of smart coatings based on antimicrobial peptides[J]. Chinese J Appl Chem, 2020, 37(8): 865-876. [8] SHEN W, HE P, XIAO C, et al. From antimicrobial peptides to antimicrobial poly(alpha-amino acid)s[J]. Adv Healthcare Mater, 2018, 7(20): e1800354. [9] KUMAR P, KIZHAKKEDATHU J N, STRAUS S K. Antimicrobial peptides: diversity, mechanism of action and strategies to improve the activity and biocompatibility in vivo[J]. Biomolecules, 2018, 8(1): 4. [10] AGEITOS J M, SANCHEZ-PEREZ A, CALO-MATA P, et al. Antimicrobial peptides (AMPs): ancient compounds that represent novel weapons in the fight against bacteria[J]. Biochem Pharmacol, 2017, 133: 117-138. [11] GOLDMAN M J, ANDERSON G M, STOLZENBERG E D, et al. Human beta-defensin-1 is a salt-sensitive antibiotic in lung that is inactivated in cystic fibrosis[J]. Cell, 1997, 88(4): 553-560. [12] CIORNEI C D, SIGURDARDOTTIR T, SCHMIDTCHEN A, et al. Antimicrobial and chemoattractant activity, lipopolysaccharide neutralization, cytotoxicity, and inhibition by serum of analogs of human cathelicidin LL-37[J]. Antimicrob Agents Chemother, 2005, 49(7): 2845-2850. [13] CHENNUPATI S K, CHIU A G, TAMASHIRO E, et al. Effects of an LL-37-derived antimicrobial peptide in an animal model of biofilm Pseudomonas sinusitis[J]. Am J Rhinol Allergy, 2009, 23(1): 46-51. [14] RIVAS-SANTIAGO B, RIVAS SANTIAGO C E, CASTANEDA-DELGADO J E, et al. Activity of LL-37, CRAMP and antimicrobial peptide-derived compounds E2, E6 and CP26 against Mycobacterium tuberculosis[J]. Int J Antimicrob Agents, 2013, 41(2): 143-148. [15] VLIEGHE P, LISOWSKI V, MARTINEZ J, et al. Synthetic therapeutic peptides: science and market[J]. Drug Discov Today, 2010, 15(1/2): 40-56. [16] BRAY B L. Large-scale manufacture of peptide therapeutics by chemical synthesis[J]. Nat Rev Drug Discov, 2003, 2(7): 587-593. [17] HANCOCK R E W, SAHL H G. Antimicrobial and host-defense peptides as new anti-infective therapeutic strategies[J]. Nat Biotechnol, 2006, 24(12): 1551-1557. [18] BISCHOFF R, SCHL TER H. Amino acids: chemistry, functionality and selected non-enzymatic post-translational modifications[J]. J Proteomics, 2012, 75(8): 2275-2296. [19] LI P, ZHOU C, RAYATPISHEH S, et al. Cationic peptidopolysaccharides show excellent broad-spectrum antimicrobial activities and high selectivity [J]. Adv Mater, 2012, 24(30): 4130-4137. [20] LIU R, CHEN X, HAYOUKA Z, et al. Nylon-3 polymers with selective antifungal activity[J]. J Am Chem Soc, 2013, 135(14): 5270-5273. [21] CHEN Y, YU L F, ZHANG B, et al. Design and synthesis of biocompatible, hemocompatible, and highly selective antimicrobial cationic peptidopolysaccharides via click chemistry[J]. Biomacromolecules, 2019, 20(6): 2230-2240. [22] IDREES M, MOHAMMAD A R, KARODIA N, et al. Multimodal role of amino acids in microbial control and drug development[J]. Antibiotics-Basel, 2020, 9(6): 330. [23] GINSBURG I, VAN HEERDEN P V, KOREN E. From amino acids polymers, antimicrobial peptides, and histones, to their possible role in the pathogenesis of septic shock: a historical perspective[J]. J Inflamm Res, 2017, 10: 7-15. [24] ZAGORODKO O, ARROYO-CRESPO J J, NEBOT V J, et al. Polypeptide-based conjugates as therapeutics: opportunities and challenges[J]. Macromol Biosci, 2017, 17(1): 1600316. [25] KATCHALSKI E. Poly-alpha-amino acids[J]. Adv Protein Chem, 1951, 6: 123-185. [26] KATCHALSKI E, BICHOVSKISLOMNITZKI L, VOLCANI B E. Action of some water-soluble poly-alpha-amino-acids on bacteria[J]. Nature, 1952, 169(4313): 1095-1096. [27] KATCHALSKI E, BERGER A, BICHOWSKYSLOMNICKI L, et al. Antibiotically active amino-acid copolymers related to gramicidin-S[J]. Nature, 1955, 176(4472): 118-119. [28] ATCHALSKI E, BICHOWSKISLOMNITZKI L, VOLCANI B E. The action of some water-soluble poly-alpha-amino-acids on bacteria[J]. Biochem J, 1953, 55(4): 671-680. [29] BICHOWSKYSLOMNICKI L, BERGER A, KURTZ J, et al. The antibacterial action of some basic amino acid copolymers[J]. Arch Biochem Biophys, 1956, 65(1): 400-413. [30] LAM S J, O'BRIEN-SIMPSON N M, PANTARAT N, et al. Combating multidrug-resistant Gram-negative bacteria with structurally nanoengineered antimicrobial peptide polymers[J]. Nat Microbiol, 2016, 1(11): 16162. [31] GABRIEL G J, MADKOUR A E, DABKOWSKI J M, et al. Synthetic mimic of antimicrobial peptide with nonmembrane-disrupting antibacterial properties[J]. Biomacromolecules, 2008, 9(11): 2980-2983. [32] ZHOU M, QIAN Y X, XIE J Y, et al. Poly(2-oxazoline)-based functional peptide mimics: eradicating MRSA infections and persisters while alleviating antimicrobial resistance[J]. Angew Chem Int Edit, 2020, 59(16): 6412-6419. [33] TAKAHASHI H, CAPUTO G A, VEMPARALA S, et al. Synthetic random copolymers as a molecular platform to mimic host-defense antimicrobial peptides[J]. Bioconjugate Chem, 2017, 28(5): 1340-1350. [34] ERGENE C, YASUHARA K, PALERMO E F. Biomimetic antimicrobial polymers: recent advances in molecular design[J]. Polym Chem, 2018, 9(18): 2407-2427. [35] PERLMAN D. Microbial production of vitamin B12 antimetabolites. I. N5-hydroxy-L-arginine from Bacillus cereus 439[J]. J Antibiot, 1974, 27: 826-832. [36] SHIMA S, MATSUOKA H, IWAMOTO T, et al. Antibacterial action of epsilon-poly-L-lysine[J]. J Antibiot, 1984, 37(11): 1449-1455. [37] SHIMA S, SAKAI H. Polylysine produced by streptomyces[J]. Agric Biol Chem, 1977, 41(9): 1807-1809. [38] WYRSTA M D, COGEN A L, DEMING T J. A parallel synthetic approach for the analysis of membrane interactive copolypeptides[J]. J Am Chem Soc, 2001, 123(51): 12919-12920. [39] BEVILACQUA M P, HUANG D J, WALL B D, et al. Amino acid block copolymers with broad antimicrobial activity and barrier properties[J]. Macromol Biosci, 2017, 17(10): 1600492. [40] ZHOU C C, QI X B, LI P, et al. High potency and broad-spectrum antimicrobial peptides synthesized via ring-opening polymerization of alpha-aminoacid-N-carboxyanhydrides[J]. Biomacromolecules, 2010, 11(1): 60-67. [41] ECKHART K E, STARVAGGI F A, SYDLIK S A. One-shot synthesis of peptide amphiphiles with applications in directed graphenic assembly[J]. Biomacromolecules, 2020, 21(9): 3878-3886. [42] MOLCHANOVA N, HANSEN P R, DAMBORG P, et al. Lysine-based alpha-peptide/beta-peptoid peptidomimetics: influence of hydrophobicity, fluorination, and distribution of cationic charge on antimicrobial activity and cytotoxicity[J]. ChemMedChem, 2017, 12(4): 312-318. [43] ZHANG D F, QIAN Y X, ZHANG S, et al. Alpha-beta chimeric polypeptide molecular brushes display potent activity against superbugs-methicillin resistant Staphylococcus aureus[J]. Sci China-Mater, 2019, 62(4): 604-610. [44] MATTHEIS C, WANG H, MEISTER C, et al. Effect of guanidinylation on the properties of poly(2-aminoethylmethacrylate)-based antibacterial materials[J]. Macromol Biosci, 2013, 13(2): 242-255. [45] GILBERT P, MOORE L E. Cationic antiseptics: diversity of action under a common epithet[J]. J Appl Microbiol, 2005, 99(4): 703-715. [46] IKEDA T, TAZUKE S, WATANABE M. Interaction of biologically active molecules with phospholipid-membranes .1.fluorescence depolarization studies on the effect of polymeric biocide bearing biguanide groups in the main chain[J]. Biochim Biophys Acta, 1983, 735(3): 380-386. [47] PILCHER K S, TROSPER F, SOIKE K F. Studies of chemical inhibitors of influenza virus multiplication.1.biguanides and related compounds[J]. Antibiot Chemother, 1961, 11(6): 381-389. [48] PREGOZEN D. Nonwoven wipe impregnating composition, US: 5141803-A[P], 1992. [49] KURZER F, PITCHFORK E D. The chemistry of biguanides[C]. Biguanides. Springer, Berlin, Heidelberg, 1968: 375-472. [50] ZHANG Y, JIANG J, CHEN Y. Synthesis and antimicrobial activity of polymeric guanidine and biguanidine salts[J]. Polymer, 1999, 40(22): 6189-6198. [51] EXLEY S E, PASLAY L C, SAHUKHAL G S, et al. Antimicrobial peptide mimicking primary amine and guanidine containing methacrylamide copolymers prepared by raft polymerization[J]. Biomacromolecules, 2015, 16(12): 3845-3852. [52] LOCOCK K E, MICHL T D, VALENTIN J D, et al. Guanylated polymethacrylates: a class of potent antimicrobial polymers with low hemolytic activity[J]. Biomacromolecules, 2013, 14(11): 4021-4231. [53] LOCOCK K E S, MICHL T D, STEVENS N, et al. Antimicrobial polymethacrylates synthesized as mimics of tryptophan-rich cationic peptides[J]. ACS Macro Lett, 2014, 3(4): 319-323. [54] LIN S M, CHEN Y Z, LI H X, et al. Design, synthesis, and evaluation of amphiphilic sofalcone derivatives as potent Gram-positive antibacterial agents[J]. Eur J Med Chem, 2020, 202: 112596. [55] BROGDEN K A. Antimicrobial peptides: pore formers or metabolic inhibitors in bacteria?[J]. Nat Rev Microbiol, 2005, 3(3): 238-250. [56] STROEMSTEDT A A, PASUPULETI M, SCHMIDTCHEN A, et al. Evaluation of strategies for improving proteolytic resistance of antimicrobial peptides by using variants of EFK17, an internal segment of LL-37[J]. Antimicrob Agents Chemother, 2009, 53(2): 593-602. [57] MENG H, KUMAR K. Antimicrobial activity and protease stability of peptides containing fluorinated amino acids[J]. J Am Chem Soc, 2007, 129(50): 15615-15622. [58] XIONG M, LEE M W, MANSBACH R A, et al. Helical antimicrobial polypeptides with radial amphiphilicity[J]. Proc Natl Acad Sci USA, 2015, 112(43): 13155-13160. [59] XIONG M H, HAN Z Y, SONG Z Y, et al. Bacteria-assisted activation of antimicrobial polypeptides by a random-coil to helix transition[J]. Angew Chem Int Ed, 2017, 56(36): 10826-10829. [60] XIONG M H, BAO Y, XU X, et al. Selective killing of Helicobacter pylori with pH-responsive helix-coil conformation transitionable antimicrobial polypeptides[J]. Proc Natl Acad Sci USA, 2017, 114(48): 12675-12680. [61] MINTZER M A, DANE E L, O'TOOLE G A, et al. Exploiting dendrimer multivalency to combat emerging and re-emerging infectious diseases[J]. Mol Pharm, 2012, 9(3): 342-354. [62] PAN Y, XUE Y, SNOW J, et al. Tailor-made antimicrobial/antiviral star polymer via ATRP of cyclodextrin and guanidine-based macromonomer[J]. Macromol Chem Phys, 2015, 216(5): 511-518. [63] CHEN C Z S, COOPER S L. Interactions between dendrimer biocides and bacterial membranes[J]. Biomaterials, 2002, 23(16): 3359-3368. [64] CHEN Y F, LAI Y D, CHANG C H, et al. Star-shaped polypeptides exhibit potent antibacterial activities[J]. Nanoscale, 2019, 11(24): 11696-11708. [65] LU C, QUAN G L, SU M, et al. Molecular architecture and charging effects enhance the in vitro and in vivo performance of multi-arm antimicrobial agents based on star-shaped poly(L-lysine)[J]. Adv Ther, 2019, 2(12): 1900147. [66] YANG Z, XI Y, BAI J, et al. Covalent grafting of hyperbranched poly-L-lysine on Ti-based implants achieves dual functions of antibacteria and promoted osteointegration in vivo[J]. Biomaterials, 2020, 269: 120534. [67] ZHANG Y, SONG W, LI S, et al. Facile and scalable synthesis of topologically nanoengineered polypeptides with excellent antimicrobial activities[J]. Chem Commun, 2020, 56(3): 356-359. [68] WANG J, LU C, SHI Y, et al. Structural superiority of guanidinium-rich, four-armed copolypeptides: role of multiple peptide-membrane interactions in enhancing bacterial membrane perturbation and permeability[J]. ACS Appl Mater Interfaces, 2020, 12(16): 18363-18374. [69] BECKER M L, LIU J Q, WOOLEY K L. Functionalized micellar assemblies prepared via block copolymers synthesized by living free radical polymerization upon peptide-loaded resins[J]. Biomacromolecules, 2005, 6(1): 220-228. [70] GAO J, WANG M, WANG F, et al. Synthesis and mechanism insight of a peptide-grafted hyperbranched polymer nanosheet with weak positive charges but excellent intrinsically antibacterial efficacy[J]. Biomacromolecules, 2016, 17(6): 2080-2086. [71] XI Y J, SONG T, TANG S Y, et al. Preparation and antibacterial mechanism insight of polypeptide-based micelles with excellent antibacterial activities[J]. Biomacromolecules, 2016, 17(12): 3922-3930. [72] SUN H, HONG Y, XI Y, et al. Synthesis, self-assembly, and biomedical applications of antimicrobial peptide polymer conjugates[J]. Biomacromolecules, 2018, 19(6): 1701-1720. [73] ZHU J, HAN H, LI F, et al. Self-assembly of amino acid-based random copolymers for antibacterial application and infection treatment as nanocarriers[J]. J Colloid Interface Sci, 2019, 540: 634-646. [74] DU J Z, O'REILLY R K. Advances and challenges in smart and functional polymer vesicles[J]. Soft Matter, 2009, 5(19): 3544-3561. [75] WANG M, ZHOU C, CHEN J, et al. Multifunctional biocompatible and biodegradable folic acid conjugated poly(epsilon-caprolactone)-polypeptide copolymer vesicles with excellent antibacterial activities[J]. Bioconjugate Chem, 2015, 26(4): 725-734. [76] ZHOU C C, YUAN Y, ZHOU P Y, et al. Highly effective antibacterial vesicles based on peptide-mimetic alternating copolymers for bone[J]. Biomacromolecules, 2017, 18(12): 4154-4162. [77] XI Y J, WANG Y, GAO J Y, et al. Dual corona vesicles with intrinsic antibacterial and enhanced antibiotic delivery capabilities for effective treatment of biofilm-induced periodontitis[J]. ACS Nano, 2019, 13(12): 13645-13657. |
[1] | Li-Juan YAN, Tian-He GAO, Dong-Jian SHI, Ming-Qing CHEN. Preparation and Properties of Eugenol/Modified Polyvinyl Alcohol Antibacterial Composite Films [J]. Chinese Journal of Applied Chemistry, 2023, 40(4): 527-535. |
[2] | Yu-Jie MA, Ying-Xin ZHANG, Huan-Yan DAI, Zhi-Min XU, Bing HAN. Preparation and Properties of 3D Printed nHA/PEEK-AgNPs Composite Porous Scaffolds [J]. Chinese Journal of Applied Chemistry, 2023, 40(4): 536-545. |
[3] | Yu-Zhu CHEN, Si-Si LIU, Meng-Meng ZHANG, Xiang-De LIN, Dong-Dong ZENG. Polyurethane Dressing Based on Antibacterial Chitosan/Carboxymethyl Cellulose Composite Drug Coating [J]. Chinese Journal of Applied Chemistry, 2023, 40(2): 252-260. |
[4] | Jia-He WANG, Da-Yong LIU, Wei LIU, Lin WANG, Biao DONG. Research Progress on Photocatalytic Antibacterial Application of TiO2 Nano Materials [J]. Chinese Journal of Applied Chemistry, 2022, 39(4): 629-646. |
[5] | Xiao-Ming XIE, Jia-Qi ZHANG. Hydrogen Bond Interaction Driven Procyanidine Assembly into Underwater Adhesive with Antibacterial Activity [J]. Chinese Journal of Applied Chemistry, 2022, 39(10): 1533-1542. |
[6] | YANG Jia-Qiang,WU Xue-Jiao, ZHOU Xu-Rong, DENG Ling, YANG Hong. Synthesis and Antibacterial Activities of Osthole Ester Derivatives [J]. Chinese Journal of Applied Chemistry, 2021, 38(8): 917-922. |
[7] | XIE Zi-Xu, ZHANG Peng-Fei, WANG Xing. Developing New Stereochemistry Antimicrobial Strategy to Advance Biosafety Materials [J]. Chinese Journal of Applied Chemistry, 2021, 38(5): 510-523. |
[8] | ZHAO Yue, MENG Xiang-Qin, YAN Xi-Yun, FAN Ke-Long. Nanozyme: A New Type of Biosafety Material [J]. Chinese Journal of Applied Chemistry, 2021, 38(5): 524-545. |
[9] | LIN Qiu-Peng, ZHANG Zhu-Ying, SHI Dong-Jian, PEI Ze-Jun, CHEN Ming-Qing, NI Zhong-Bin. Preparation and Properties of Sustained Release Chitosan/Chlorhexidine Acetate Composite Microspheres [J]. Chinese Journal of Applied Chemistry, 2021, 38(12): 1599-1611. |
[10] | DING Ya-Li, HU Xiang-Xiang, FENG Xuan, ZHANG Ran, SHI Tong-Fei, WEI Lai. Mechanism of Enhancing Antifreeze Protein Activity by Low Molecular Mass Molecules [J]. Chinese Journal of Applied Chemistry, 2021, 38(12): 1612-1620. |
[11] | ZHANG Shuai, TAO You-Hua. Synthesis of Two Functional Cyclic Lysine Monomers [J]. Chinese Journal of Applied Chemistry, 2021, 38(12): 1676-1678. |
[12] | ZHOU Chao, SHENG Cheng-Ju, WEN Lin-Lin. Preparation of Imidazolium Salt-based Poly(ionic liquids) Antibacterial Agent and Its Application in Hydrogel Dressing [J]. Chinese Journal of Applied Chemistry, 2021, 38(1): 51-59. |
[13] | XING Yayan, SHI Yuzhe, DENG Shixian, ZHAO Baihan, LIU Zhiguo. Preparation and Application of Catechin-Silver Nanocomposites [J]. Chinese Journal of Applied Chemistry, 2020, 37(9): 1062-1068. |
[14] | SUN Zhenlong, YAN Shunjie, ZHOU Rongtao, ZHANG Zhenyan, OUYANG Zhaofei, ZHU Xuezhen, YIN Jinghua. Recent Progress in the Development of Smart Coatings Based on Antimicrobial Peptides [J]. Chinese Journal of Applied Chemistry, 2020, 37(8): 865-876. |
[15] | YANG Jin,MA Qiseng,ZHONG Ying,ZHU Longbao,GE Fei,TAO Yugui,SONG Ping. Solid-Phase Synthesis of Cyclohexapeptide Thermoactinoamide A and Its Antibacterial Activity [J]. Chinese Journal of Applied Chemistry, 2019, 36(6): 677-682. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||