
Chinese Journal of Applied Chemistry ›› 2025, Vol. 42 ›› Issue (4): 511-521.DOI: 10.19894/j.issn.1000-0518.240394
• Full Papers • Previous Articles Next Articles
Song-Bai WANG1(), Tian-Yu LI1, Meng-Shu WEI1, Xin-Ming GUO1, Jun-Fen LI1, Ying ZHOU1, Xiu-Ying PENG2, Chuan DONG1(
)
Received:
2024-11-30
Accepted:
2025-03-17
Published:
2025-04-01
Online:
2025-05-14
Contact:
Song-Bai WANG,Chuan DONG
Supported by:
CLC Number:
Song-Bai WANG, Tian-Yu LI, Meng-Shu WEI, Xin-Ming GUO, Jun-Fen LI, Ying ZHOU, Xiu-Ying PENG, Chuan DONG. Dual Mode Detection of Chlorogenic Acid Based on Silicon Quantum Dot via Fluorescence Spectroscopy and Colorimetric Method[J]. Chinese Journal of Applied Chemistry, 2025, 42(4): 511-521.
Fig.4 (A) Fluorescence emission spectra of SiQDs at different excitation wavelengths; (B) UV-Vis absorption spectrum of SiQDs; (C) Effect of room temperature placement time on the fluorescence intensity of SiQDs; (D) Effect of pH on the fluorescence intensity of SiQDs; (E) Effect of excitation time on the fluorescence intensity of SiQDs; (F) Effect of ionic strength on the fluorescence intensity of SiQDs
Fig.5 (A) Effect of reactant ratio on experimental results; (B) Effect of reaction time on experimental results; (C) Effect of reaction temperature on experimental results; (D) Line graph of Fig.5A; (E) Line graph of Fig.5B; (F) Line graph of Fig.5C
Fig.6 (A) Fluorescence intensity of SiQDs in the presence of ionic interferences Br-, Zn2+, Cu2+, Fe2+, NO2-, Pb2+,SO42-, Al3+, K+, Cl-(1500 μmol/L) and the addition of 150 μmol/L CGA; (B) Fluorescence intensity of SiQDs in the presence of organic small molecule interferences Gln, L-Cys, L-Tyr, SA, AA, GSH, Met, CA, DA, Glu, Try, Glucose, Sucrose, Leu, THB, QA and CAA (1500 μmol/L) in the presence of 150 μmol/L CGA; (C) Fluorescence spectrograms of SiQDs with the concentration of CGA ranging from 0 to 435 μmol/L; (D) Linear relationship between ln (FI) and CGA concentration
Fig.7 (A) Absorbance of SiQDs in the presence of ionic interferences Cu2+, NO2-, Zn2+, Cl-, Br-, Fe2+, Al3+, NO3-, Pb2+, K+ and SO42-(500 μmol/L) and with the addition of 50 μmol/L CGA; (B) Absorbance of SiQDs in the presence of organic small molecule interferences L-Tyr, Glucose, Sucrose, DA, GSH, Gln, SA, Met, CA, Cys, Glu, Try, Leu, THB, QA, CAA (500 μmol/L) and the addition of 50 μmol/L CGA; (C) UV profiles of SiQDs in the range of 0~1000 μmol/L for the concentration of CGA; (D) Linear plots of the absorbance and the concentration of CGA
Detection method | Material | Linear range/(μmol·L-1) | LOD of CGA/(μmol·L-1) | Ref. |
---|---|---|---|---|
Electrochemistry | TAPB-DMTP-COFS/AuNPs/GCE | 0.010~40 | 0.009 5 | [ |
BDD | 5.64~147.0 | 1.260 | [ | |
MIS/Au/GCE | 0.50~14 | 0.148 | [ | |
PASA/GCE | 0.40~12 | 0.040 | [ | |
Fluorescence | CDs | 0.15~60 | 0.045 | [ |
CDs | 0.10~220 | 0.030 | [ | |
CDs | 1.53~80 | 0.460 | [ | |
SiQDs | 0.054~265 | 0.018 | This work | |
Colorimetry | Probe | 11.3~113 | 0.475 | [ |
SiQDs | 0.516~45 | 0.172 | This work |
Table 1 Comparison of this method with other CGA detection methods
Detection method | Material | Linear range/(μmol·L-1) | LOD of CGA/(μmol·L-1) | Ref. |
---|---|---|---|---|
Electrochemistry | TAPB-DMTP-COFS/AuNPs/GCE | 0.010~40 | 0.009 5 | [ |
BDD | 5.64~147.0 | 1.260 | [ | |
MIS/Au/GCE | 0.50~14 | 0.148 | [ | |
PASA/GCE | 0.40~12 | 0.040 | [ | |
Fluorescence | CDs | 0.15~60 | 0.045 | [ |
CDs | 0.10~220 | 0.030 | [ | |
CDs | 1.53~80 | 0.460 | [ | |
SiQDs | 0.054~265 | 0.018 | This work | |
Colorimetry | Probe | 11.3~113 | 0.475 | [ |
SiQDs | 0.516~45 | 0.172 | This work |
Fig.6 (A) Fluorescence decay curves of SiQDs (τ0) and SiQDs+CGA (τ); (B) Zeta potentials of SiQDs (1 mg/mL), APTES (0.06 mol/L), CGA (0.01 mol/L), and SiQDs+CGA and APTES+CGA; (C) TEM images of SiQDs incorporated into CGA (inset: histogram of frequency distribution of particle sizes); (D) UV-Vis absorption spectra of SiQDs (1 mg/mL), CGA (0.01 mol/L), and SiQDs+CGA
Samples | Found/(μmol·L-1) | Add/(μmol·L-1) | Total found/(μmol·L-1) | Recovery/% | Average recovery/% | RSD/% |
---|---|---|---|---|---|---|
Lonicera japonica Thunb. | 0.82 | 89.29 | 89.23 | 99.02 | 98.55 | 0.56 |
0.85 | 89.29 | 88.12 | 97.76 | |||
0.83 | 89.29 | 89.10 | 98.87 | |||
8.97 | 44.44 | 54.70 | 102.4 | 102.8 | 1.96 | |
9.01 | 44.44 | 56.28 | 105.5 | |||
8.91 | 44.44 | 53.68 | 100.6 | |||
27.09 | 17.67 | 46.48 | 103.8 | 102.9 | 2.18 | |
26.12 | 17.67 | 43.69 | 99.77 | |||
25.66 | 17.67 | 45.51 | 105.0 |
Table 2 Determination of CGA in Lonicera japonica Thunb.
Samples | Found/(μmol·L-1) | Add/(μmol·L-1) | Total found/(μmol·L-1) | Recovery/% | Average recovery/% | RSD/% |
---|---|---|---|---|---|---|
Lonicera japonica Thunb. | 0.82 | 89.29 | 89.23 | 99.02 | 98.55 | 0.56 |
0.85 | 89.29 | 88.12 | 97.76 | |||
0.83 | 89.29 | 89.10 | 98.87 | |||
8.97 | 44.44 | 54.70 | 102.4 | 102.8 | 1.96 | |
9.01 | 44.44 | 56.28 | 105.5 | |||
8.91 | 44.44 | 53.68 | 100.6 | |||
27.09 | 17.67 | 46.48 | 103.8 | 102.9 | 2.18 | |
26.12 | 17.67 | 43.69 | 99.77 | |||
25.66 | 17.67 | 45.51 | 105.0 |
1 | NAVEED M, BIBI J, KAMBOH A A, et al. Pharmacological values and therapeutic properties of black tea (Camellia sinensis): a comprehensive overview[J]. Biomed Pharmacother, 2018, 100: 521-531. |
2 | MARQUES V, FARAH A. Chlorogenic acids and related compounds in medicinal plants and infusions[J]. Food Chem, 2009, 113(4): 1370-1376. |
3 | TOŠOVIĆ J, MARKOVIĆ S, DIMITRIĆ MARKOVIĆ J M, et al. Antioxidative mechanisms in chlorogenic acid[J]. Food Chem, 2017, 237: 390-398. |
4 | GASTÉLUM-ESTRADA A, RABADÁN-CHÁVEZ G, REZA-ZALDÍVAR E E, et al. Biofortified beverage with chlorogenic acid from stressed carrots: anti-obesogenic, antioxidant, and anti-inflammatory properties[J]. Foods, 2023, 12(21): 3959. |
5 | HUANG J, XIE M, HE L, et al. Chlorogenic acid: a review on its mechanisms of anti-inflammation, disease treatment, and related delivery systems[J]. Front Pharmacol, 2023, 14: 1218015. |
6 | SOCAŁA K, SZOPA A, SEREFKO A, et al. Neuroprotective effects of coffee bioactive compounds: a review[J]. Int J Mol Sci, 2020, 22(1): 107. |
7 | 李淑芳, 郝学飞, 王红旗, 等. 基于超高效液相色谱联用高分辨质谱自动解析方法的金银花不同加工方式分析[J]. 应用化学, 2022, 39(5): 819-827. |
LI S F, HAO X F, WANG H Q, et al. Automatic data analysis strategy coupled with Q exactive high resolution mass spectrometry for studying different industrial process of Lonicerae Japonicae Flos[J]. Chin J Appl Chem, 2022, 39(5): 819-827. | |
8 | YUAN W, HAN X, SHI G, et al. Machine learning-driven multi-level composite SERS platform for trace detection of chlorogenic acid as pharmacodynamic substance in honeysuckle[J]. Opt Laser Technol, 2024, 169: 109911. |
9 | GONZÁLEZ-JIMÉNEZ F E, SALAZAR-MONTOYA J A, CALVA-CALVA G, et al. Phytochemical characterization, in vitro antioxidant activity, and quantitative analysis by micellar electrokinetic chromatography of hawthorn (crataegus pubescens) fruit[J]. J Food Qual, 2018, 2018: 1-11. |
10 | CRUPI P, BLEVE G, TUFARIELLO M, et al. Comprehensive identification and quantification of chlorogenic acids in sweet cherry by tandem mass spectrometry techniques[J]. J Food Compos Anal, 2018, 73: 103-111. |
11 | LEBOT V, MICHALET S, LEGENDRE L. Identification and quantification of phenolic compounds responsible for the antioxidant activity of sweet potatoes with different flesh colours using high performance thin layer chromatography (HPTLC)[J]. J Food Compos Anal, 2016, 49: 94-101. |
12 | WANG J, PAN S, SUN W, et al. Ingenious microenvironment regulation of a metal-organic framework (MOF) nanoreactor for electrochemical detection of chlorogenic acid[J]. New J Chem, 2024, 48(4): 1792-1799. |
13 | LIU Q, DONG Z, HAO A, et al. Synthesis of highly fluorescent carbon dots as a dual-excitation rationmetric fluorescent probe for the fast detection of chlorogenic acid[J]. Talanta, 2021, 221: 121372. |
14 | GUTIÉRREZ-ORTIZ A L, VIDA V, PETERKA M, et al. Fluorescent imprinted nanoparticles for sensing of chlorogenic acid in coffee extracts[J]. Sensors, 2022, 22(24): 9874. |
15 | GELLOZ B, JUANGSA F B, NOZAKI T, et al. Si/SiO2 core/shell luminescent silicon nanocrystals and porous silicon powders with high quantum yield, long lifetime, and good stability[J]. Front Phys, 2019, 7: 47. |
16 | SRIVASTAVA P K, HAN S, TU C C, et al. Phototoxicity generated by silicon quantum dot nanoparticles on zebrafish embryos[J]. ACS Appl Bio Mater, 2019, 2(7): 2872-2878. |
17 | CHIAPPINI C, DE ROSA E, MARTINEZ J O, et al. Biodegradable silicon nanoneedles delivering nucleic acids intracellularly induce localized in vivo neovascularization[J]. Nat Mater, 2015, 14(5): 532-539. |
18 | ZHANG H, WANG H, YANG H, et al. Luminescent, protein-binding and imaging properties of hyper-stable water-soluble silicon quantum dots[J]. J Mol Liq, 2021, 331: 115769. |
19 | LIU F, LIN J, LUO Y, et al. Sialic acid-targeting multi-functionalized silicon quantum dots for synergistic photodynamic and photothermal cancer therapy[J]. Biomater Sci, 2023, 11(11): 4009-4021. |
20 | LIU Y, WANG Q, GUO S, et al. Highly selective and sensitive fluorescence detection of hydroquinone using novel silicon quantum dots[J]. Sens Actuators B:Chem, 2018, 275: 415-421. |
21 | SULLAM E M, ADAM K M, LIU J, et al. Silicon quantum dots-based fluorescent sensor for the detection of cobalt with high sensitivity and selectivity[J]. Chin Chem Lett, 2024, 35(1): 108476. |
22 | LIU Y, CAO L, ZAN M, et al. Cyan-emitting silicon quantum dots as a fluorescent probe directly used for highly sensitive and selective detection of chlorogenic acid[J]. Talanta, 2021, 233: 122465. |
23 | DI S, STEVEN W, PEREMY J M, et al. Streamlined synthesis of potential dual-emissive fluorescent silicon quantum dots (SiQDs) for cell imaging[J]. RSC Adv, 2023, 13(38): 26392-26405. |
24 | PAN C J, DENG X X, LU M C, et al. Preparation of bright blue fluorescent carbon dots and their application in highly sensitive chlorogenic acid detection[J]. Chin J Anal Chem, 2023, 51(12):100334. |
25 | YANG H, YANG L, YUAN Y, et al. A portable synthesis of water-soluble carbon dots for highly sensitive and selective detection of chlorogenic acid based on inner filter effect[J]. Spectrochim Acta A, 2018, 189: 139-146. |
26 | ZHANG T, CHEN Y, HUANG W, et al. A novel AuNPs-doped COFs composite as electrochemical probe for chlorogenic acid detection with enhanced sensitivity and stability[J]. Sens Actuators B:Chem, 2018, 276: 362-369. |
27 | YARDIM Y, KESKIN E, ŞENTÜRK Z. Voltammetric determination of mixtures of caffeine and chlorogenic acid in beverage samples using a boron-doped diamond electrode[J]. Talanta, 2013, 116: 1010-1017. |
28 | SANTOS W D J R, SANTHIAGO M, YOSHIDA I V P, et al. Novel electrochemical sensor for the selective recognition of chlorogenic acid[J]. Anal Chim Acta, 2011, 695(12): 44-50. |
29 | CHAO M, MA X. Voltammetric determination of chlorogenic acid in pharmaceutical products using poly(aminosulfonic acid) modified glassy carbon electrode[J]. J Food Drug Anal, 2014, 22(4): 512-519. |
30 | ZHU H, LI H, SHUANG P, et al. Hydrothermal synthesis of carbon dots and their application for detection of chlorogenic acid[J]. Luminescence, 2020, 35(7): 989-997. |
31 | CUFFARO D, PALLADINO P, DIGIACOMO M, et al. Fast, sensitive, and sustainable colorimetric detection of chlorogenic acid in artichoke waste material[J]. Food Chem, 2025, 463: 141505. |
[1] | Ling LI, Li-Ting TANG, Jun-Jie YANG, Li-Qiang YAN, Jian-Ping LI. Recent Advances in Small-Molecule Organic Fluorescent Probes for Hydrazine [J]. Chinese Journal of Applied Chemistry, 2025, 42(4): 453-465. |
[2] | Ju-Ying XIAO, Xia ZHAO, Yuan LIN, Zhao-Hui SU. Preparation and Investigation of Functional PEGylated Chitosan Nanoparticles [J]. Chinese Journal of Applied Chemistry, 2025, 42(3): 386-395. |
[3] | De-Jin TIE, Mei-Jia XU, Xiao-Dan TANG, Hong-Min JIA, Hong-Mei YU. A Double Ratio Fluorescent Probe for pH and Water Detection [J]. Chinese Journal of Applied Chemistry, 2024, 41(10): 1491-1501. |
[4] | Xin-Yu ZHAO, Zuo-Jia QIN, Xiao-Bing ZHANG, Lin YUAN. Research Progress in Activatable NIR-Ⅱ Small Molecule Fluorescent Probes [J]. Chinese Journal of Applied Chemistry, 2024, 41(1): 39-59. |
[5] | Jia-Mei GENG, Su-Fang MA, Wen LIU, Hai-Peng DIAO, Zhi-Fang WU, Si-Jin LI. Liver-Targeted Fluorescent Probes for Specific Detection of ONOO- in HepG2 Cells [J]. Chinese Journal of Applied Chemistry, 2023, 40(3): 441-448. |
[6] | Nan-Yu LIN, Feng GAO, Jiang-Ying QU, Jing-Jing TU, Wei-Jun ZHONG, Yun-Hao ZANG. Preparation of Super-hydrophilic/Underwater Oil-phobic High Silicon Cloth and Its Oil-water Separation Performance [J]. Chinese Journal of Applied Chemistry, 2023, 40(3): 449-459. |
[7] | Song-Song XUE, Zheng-Feng XIE, Jia-Wei HE, Tian-Yi ZHANG, Bao-Ping XIA, Yu-Qin LI. Synthesis of Sulfonylhydrazone Probe with High Selectivity and Rapid Identification of Hg(Ⅱ) Ion and Its Application in Adsorption [J]. Chinese Journal of Applied Chemistry, 2022, 39(5): 760-768. |
[8] | Rui HUANG, Chang-Qing YE, Ya-Jun LI, Mong-Feng CHIOU, Da-Liang LI, Hong-Li BAO. Progress of Mitochondria⁃Targeted Near⁃Infrared HClO/ClO- Fluorescent Probes [J]. Chinese Journal of Applied Chemistry, 2022, 39(3): 407-424. |
[9] | Cheng-Lu ZHANG, Yi-Ming WANG, Zhi-Xuan REN, Lu LI, Yu-Qing LI, Fu-Lu SONG. Fluorescent Probe for Rapid Detection of H2S with Benzimidazole Naphthalimide as the Core [J]. Chinese Journal of Applied Chemistry, 2022, 39(3): 489-497. |
[10] | Si-Wei YU, Liang-Peng WANG, Ri-Zhe JIN, Chuan-Qing KANG. Recognition of ClO- and Cellular Imaging with Xanthene-based Fluorescent Probes [J]. Chinese Journal of Applied Chemistry, 2022, 39(12): 1903-1911. |
[11] | HUANG Yi-Wen, WANG Li-Yan, ZHAO Bing, SONG Bo. Synthesis of Water Soluble Methoxynaphthene Hemicine for Detection of Chromium(Ⅲ) Ion [J]. Chinese Journal of Applied Chemistry, 2021, 38(11): 1503-1511. |
[12] | CAI Fengze, XU Yongling, ZHOU Le, XU Bingsong, CHEN Hao, SUN Jianqiang, LI Di, WANG Hui. Synthesis and Properties of Red-Emitting Fluorescence Probe for Viscosity Detection [J]. Chinese Journal of Applied Chemistry, 2020, 37(4): 440-446. |
[13] | DONG Ziyue, ZHOU Xiaoxia, ZHAO Xiaohui, YE Daying, AN Yue. A Heterocyclic Aromatic Halide Small Molecule Fluorescent Probe for the Detection of 2,4,6-Trinitrophenol [J]. Chinese Journal of Applied Chemistry, 2020, 37(3): 332-339. |
[14] | GAO Man, HE Xin, CUI Jingnan, LIU Tao, TIAN Zhenhao, HE Shengui. A Coumarin-Based Fluorescent Probe for Rapid Detection of Endogenous Formaldehyde [J]. Chinese Journal of Applied Chemistry, 2019, 36(9): 1053-1060. |
[15] | PAN Wenhui,LI Wen,QU Jinghan,YE Yipei,QU Junle,YANG Zhigang. Research Progress on Organic Fluorescent Probes for Single Molecule Localization Microscopy [J]. Chinese Journal of Applied Chemistry, 2019, 36(3): 269-281. |
Viewed | ||||||||||||||||||||||||||||||||||||||||||||||||||
Full text 21
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||
Abstract 27
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||