Chinese Journal of Applied Chemistry ›› 2022, Vol. 39 ›› Issue (3): 489-497.DOI: 10.19894/j.issn.1000-0518.210232
• Full Papers • Previous Articles Next Articles
Cheng-Lu ZHANG(), Yi-Ming WANG, Zhi-Xuan REN, Lu LI, Yu-Qing LI, Fu-Lu SONG
Received:
2021-05-13
Accepted:
2021-07-26
Published:
2022-03-01
Online:
2022-03-15
Contact:
Cheng-Lu ZHANG
About author:
zhangchenglu@lnnu.edu.cnSupported by:
CLC Number:
Cheng-Lu ZHANG, Yi-Ming WANG, Zhi-Xuan REN, Lu LI, Yu-Qing LI, Fu-Lu SONG. Fluorescent Probe for Rapid Detection of H2S with Benzimidazole Naphthalimide as the Core[J]. Chinese Journal of Applied Chemistry, 2022, 39(3): 489-497.
Add to citation manager EndNote|Ris|BibTeX
URL: http://yyhx.ciac.jl.cn/EN/10.19894/j.issn.1000-0518.210232
Fig.3 (A) The titration experiment of probe DBNG fluorescence recognition of H2S and (B) the relationship of fluorescence intensity of probe with the concentration of H2S at 515 nm
Fig.5 Interference experiment of probe DBNG fluorescence recognition of H2S(1.Gly; 2. Cl; 3. Br; 4.SO32; 5.NO2; 6.H2PO4; 7.H2O2;8.Cys; 9.Hcy; 10.GSH; 11.Pro; 12.Try; 13.Met; 14.Val; 15.Asp; 16.Ser; 17.Leu; 18.Ala; 19.Phe; 20.blank where H2S is 20 μmol/L and for interfering substances is 50 μmol/L)
样品 Sample | 添加浓度 c(H2S spiked)/(μmol·L-1) | 检测浓度 c(total H2S found)/(μmol·L-1) | H2S回收率 Recovery of H2S/% |
---|---|---|---|
自来水 Tap water | 10 | 9.89 | 98.9 |
20 | 19.79 | 98.9 | |
30 | 29.39 | 97.9 | |
河水 River water | 10 | 9.93 | 99.3 |
20 | 20.21 | 101.05 | |
30 | 30.09 | 100.3 | |
海水 Sea water | 10 | 10.04 | 100.4 |
20 | 19.86 | 99.3 | |
30 | 30.65 | 102.1 |
Table 1 Determination of H2S in different water samples with fluorescent probe DBNG
样品 Sample | 添加浓度 c(H2S spiked)/(μmol·L-1) | 检测浓度 c(total H2S found)/(μmol·L-1) | H2S回收率 Recovery of H2S/% |
---|---|---|---|
自来水 Tap water | 10 | 9.89 | 98.9 |
20 | 19.79 | 98.9 | |
30 | 29.39 | 97.9 | |
河水 River water | 10 | 9.93 | 99.3 |
20 | 20.21 | 101.05 | |
30 | 30.09 | 100.3 | |
海水 Sea water | 10 | 10.04 | 100.4 |
20 | 19.86 | 99.3 | |
30 | 30.65 | 102.1 |
Fig.14 Fluorescence images of H2S in HeLa cells. Cells were treated with probe DBNG (45 min), washed, and subjected to different treatments(A) control (no H2S donor); (B) 20 μmol/L H2S donor (60 min); (C) 50 μmol/L H2Sdonor (60 min); (D) 90 μmol/L H2S donor (60 min)
1 | CHEN W, XIE P, SHAN X, et al. A near-infrared naphthofluorescein-based fluorescent probe for hydrogen sulfide detection[J]. J Mol Struct, 2020, 1207: 127822. |
2 | WANG M, TANG J J, WANG L X, et al. Hydrogen sulfide enhances adult neurogenesis in a mouse model of Parkinson's disease[J]. Neural Regener Res, 2021, 16(7): 1353. |
3 | YUAN Z N, ZHENG Y Q, WANG B H. Prodrugs of hydrogen sulfide and related sulfur species: recent development[J]. Chin J Nat Med, 2020, 18(4): 296-307. |
4 | WANG B, LI P, YU F, et al. A reversible fluorescence probe based on Se-BODIPY for the redox cycle between HClO oxidative stress and H2S repair in living cells[J]. Chem Commun, 2013, 49(10): 1014-1016. |
5 | LOU Z, PENG L, PAN Q, et al. A reversible fluorescent probe for detecting hypochloric acid in living cells and animals: utilizing a novel strategy for effectively modulating the fluorescence of selenide and selenoxide[J]. Chem Commun, 2013, 49(24): 2445-2447. |
6 | KARMAKAR P, MANNA S, ALI S S, et al. Reaction-based ratiometric fluorescent probe for selective recognition of sulfide anions with a large Stokes shift through switching on ESIPT[J]. New J Chem, 2017, 42(1):76-84. |
7 | SAMANTA S K, ALI S S, GANGOPADHYAY A, et al. A highly selective ratiometric fluorescent probe for H2S based on new heterocyclic ring formation and detection in live cells [J]. Supramol Chem, 2019, 31: 349-360. |
8 | YAN Y H, CHEN L J, LI R Y, et al. A turn-on fluorescent probe with a dansyl fluorophore for hydrogen sulfide sensing[J]. RSC Adv, 2019, 9(47): 27652-27658. |
9 | KAUSHIK R, SINGH A, GHOSH A, et al. Selective colorimetric sensor for the detection of Hg2+ and H2S in aqueous medium and waste water samples [J]. Chemistryselect, 2016, 1(8): 1533-1540. |
10 | VASIMALAI N, FERNANDEZ-ARGUELLES M T, ESPINA B, et al. Detection of sulfide using mercapto tetrazine-protected fluorescent gold nanodots: preparation of paper-based testing kit for on-site monitoring[J]. ACS Appl Mater Interfaces, 2018, 10(2): 1634-1645. |
11 | YUN J Y, CHAE J B, KIM M, et al. A multiple target chemosensor for the sequential fluorescence detection of Zn2+ and S2- and the colorimetric detection of Fe3+/2+ in aqueous media and living cells[J]. Photochem Photobiol Sci, 2019, 18: 166-176. |
12 | AULSEBROOK M L, BISWAS S, LEAVER F M, et al. A luminogenic lanthanide-based probe for the highly selective detection of nanomolar sulfide levels in aqueous samples[J]. Chem Commun, 2017, 53: 4911-4914. |
13 | ZHANG Y, ZHANG L. A novel “turn-on” fluorescent probe based on hydroxy functionalized naphthalimide as a logic platform for visual recognition of H2S in environment and living cells[J]. SAA, 2020, 235(118331): 1386-1425. |
14 | ZHANG Y, ZHANG L. A novel “turn-on” fluorescent probe based on naphthalimide for monitoring H2S levels in living cells and red wine[J]. Microchem J, 2020, 159(29): 105394. |
15 | SHARMA H, SIDHU JAGPREET S, HASSEN WALID M, et al. Synthesis of a 3,4-disubstituted 1,8-naphthalimide-based DNA intercalator for direct imaging of Legionella pneumophila[J]. ACS Omega, 2019, 4(3): 5829-5838. |
16 | RAJALAKSHMI K, NAM Y S, YOUG S, et al. Biocompatible silica nanoparticles conjugated with azidocoumarin for trace level detection and visualization of endogenous H2S in PC3 cells[J]. Sens Actuator B: Chem, 2018, 259: 307-315. |
17 | CHENG F M, WU X S, LIU M L, et al. A porphyrin-based near-infrared fluorescent sensor for sulfur ion detection and its application in living cells[J]. Sens Actuator B: Chem, 2016, 228: 673-678. |
18 | DS A, JIAN L B, LI S C, et al. Design, synthesis and evaluation of a novel fluorescent probe to accurately detect H2S in hepatocytes and natural waters[J]. Spectrochim Acta A: Mol Biomol Spectrosc, 2020, 228: 117690. |
19 | ZHANG J, LI J, CHEN B, et al. An off-on fluorescent probe for real-time sensing the fluctuations of intracellular pH values in biological processes[J]. Dyes Pigm, 2019, 170: 107620. |
20 | YE F, LIANG X M, XU K X, et al. A novel dithiourea-appended naphthalimide “on-off” fluorescent probe for detecting Hg2+ and Ag+ and its application in cell imaging[J]. Talanta, 2019, 200: 494-502. |
21 | QIAN J, GONG D, RU J, et al. A naphthalimide-based lysosome-targeting fluorescent probe for the selective detection and imaging of endogenous peroxynitrite in living cells[J]. Anal Bioanal Chem, 2019, 411(17): 3929-3939. |
22 | 董智云, 刘洋, 王迎进, 等. 基于萘酰亚胺-苯并咪唑鎓的荧光传感器对H2PO4 -的高选择性识别[J]. 应用化学, 2020, 37(7): 839-846. |
DONG Z Y, LIU Y, WANG Y J, et al. Naphthalimide-benzimidazolium based fluorescent chemosensor for highly selective recogniton of H2PO4 -[J]. Chinese J Appl Chem, 2020, 37(7): 839-846. | |
23 | GHAITH A G, PETER G H, NEIL B, et al. Auto-fluorescent PAMAM-based dendritic molecules and their potential application in pharmaceutical sciences [J]. Int J Pharm, 2020, 579: 119-187. |
24 | SERAJ S, ROUHANI S, FARIDBOD F. Fructose recognition using new “off-on” fluorescent chemical probes based on boronate-tagged 1,8-naphthalimide[J]. New J Chem, 2018, 42(24): 19872-19880. |
25 | CHEN Y, ZHAO L, FU H, et al. Positional isomeric chemosensors: fluorescent and colorimetric cyanide detection based on Si-O cleavage[J]. New J Chem, 2017, 41(17): 8734-8738. |
26 | LING J, NAREN G, KELLY J, et al. Building pH sensors into paper-based small-molecular logic systems for very simple detection of edges of objects [J]. J Am Chem Soc, 2015, 137(11): 3763-3766. |
27 | MIN Z, CHEN J, LIU C, et al. Anion binding modes in cis-trans-isomers of a binding site-fluorophore-π-extended system[J]. Chem Commun, 2014, 50(94): 14748-14751. |
28 | LEE J F, HSU S L C. Green polymer-light-emitting-diodes based on polyfluorenes containing N-aryl-1,8-naphthalimide and 1,8-naphthoilene-arylimidazole derivatives as color tuner[J]. Polymer, 2009, 50(24): 5668-5674. |
29 | GOSWAMI S, DAS A K, MANNA A, et al. Nanomolar detection of hypochlorite by a rhodamine-based chiral hydrazide in absolute aqueous media: application in tap water analysis with live-cell imaging[J]. Anal Chem, 2014, 86(13): 6315-6322. |
[1] | Jia-Mei GENG, Su-Fang MA, Wen LIU, Hai-Peng DIAO, Zhi-Fang WU, Si-Jin LI. Liver-Targeted Fluorescent Probes for Specific Detection of ONOO- in HepG2 Cells [J]. Chinese Journal of Applied Chemistry, 2023, 40(3): 441-448. |
[2] | Song-Song XUE, Zheng-Feng XIE, Jia-Wei HE, Tian-Yi ZHANG, Bao-Ping XIA, Yu-Qin LI. Synthesis of Sulfonylhydrazone Probe with High Selectivity and Rapid Identification of Hg(Ⅱ) Ion and Its Application in Adsorption [J]. Chinese Journal of Applied Chemistry, 2022, 39(5): 760-768. |
[3] | Rui HUANG, Chang-Qing YE, Ya-Jun LI, Mong-Feng CHIOU, Da-Liang LI, Hong-Li BAO. Progress of Mitochondria⁃Targeted Near⁃Infrared HClO/ClO- Fluorescent Probes [J]. Chinese Journal of Applied Chemistry, 2022, 39(3): 407-424. |
[4] | Si-Wei YU, Liang-Peng WANG, Ri-Zhe JIN, Chuan-Qing KANG. Recognition of ClO- and Cellular Imaging with Xanthene-based Fluorescent Probes [J]. Chinese Journal of Applied Chemistry, 2022, 39(12): 1903-1911. |
[5] | HUANG Yi-Wen, WANG Li-Yan, ZHAO Bing, SONG Bo. Synthesis of Water Soluble Methoxynaphthene Hemicine for Detection of Chromium(Ⅲ) Ion [J]. Chinese Journal of Applied Chemistry, 2021, 38(11): 1503-1511. |
[6] | DONG Zhiyun, LIU Yang, WANG Yingjin, ZHAO Sanhu, XI Fugui. Naphthalimide-Benzimidazolium Based Fluorescent Chemosensor for Highly Selective Recogniton of H2PO-4 [J]. Chinese Journal of Applied Chemistry, 2020, 37(7): 839-846. |
[7] | CAI Fengze, XU Yongling, ZHOU Le, XU Bingsong, CHEN Hao, SUN Jianqiang, LI Di, WANG Hui. Synthesis and Properties of Red-Emitting Fluorescence Probe for Viscosity Detection [J]. Chinese Journal of Applied Chemistry, 2020, 37(4): 440-446. |
[8] | DONG Ziyue, ZHOU Xiaoxia, ZHAO Xiaohui, YE Daying, AN Yue. A Heterocyclic Aromatic Halide Small Molecule Fluorescent Probe for the Detection of 2,4,6-Trinitrophenol [J]. Chinese Journal of Applied Chemistry, 2020, 37(3): 332-339. |
[9] | GAO Man, HE Xin, CUI Jingnan, LIU Tao, TIAN Zhenhao, HE Shengui. A Coumarin-Based Fluorescent Probe for Rapid Detection of Endogenous Formaldehyde [J]. Chinese Journal of Applied Chemistry, 2019, 36(9): 1053-1060. |
[10] | TANG Yucai, WANG Ping, RAN Shutong, CHEN Piao. Synthesis of (E)-β-Vinyl Sulfones by Metal-Free Tetrabutylammonium Iodide/Potassium Persulfate Mediated Radical Denitrative Sulfonylation of β-Nitrostyrenes with Sulfonylhydrazides [J]. Chinese Journal of Applied Chemistry, 2019, 36(6): 664-670. |
[11] | BAO Jinping, FAN Sufang, YANG Guoyu, WANG Zhimin, WANG Ying, LIU Xiaohua, XU Cuilian. Synthesis and Antifungal Activities of Chitosan Oligosaccharide Thiosemicarbazone Schiff Base Cu(Ⅱ) Complex [J]. Chinese Journal of Applied Chemistry, 2019, 36(5): 500-508. |
[12] | PAN Wenhui,LI Wen,QU Jinghan,YE Yipei,QU Junle,YANG Zhigang. Research Progress on Organic Fluorescent Probes for Single Molecule Localization Microscopy [J]. Chinese Journal of Applied Chemistry, 2019, 36(3): 269-281. |
[13] | Chunlin YANG, Yonglan FENG, Fuxing ZHANG, Jiangxi YU, Wujiu JIANG, Daizhi KUANG. Syntheses, Struture and Herbicidal Activity of Bis(substituted salicylaldehyde) Carbohydrazide n-Butyltin Complexes [J]. Chinese Journal of Applied Chemistry, 2018, 35(7): 795-801. |
[14] | SU Ce, CHANG Kaishan, LI Siliang, LI Guanbin, ZHANG Hongbo, BAI Lingling. Synthesis and Properties of a Zn2+ Fluorescent Probe Based on Coumarins [J]. Chinese Journal of Applied Chemistry, 2018, 35(5): 532-537. |
[15] | CHEN Fan, GUO Zhiqian, ZHU Weihong. Synthesis and Characterization of pH and Temperature Sensitive Polymeric Fluorescent Probe [J]. Chinese Journal of Applied Chemistry, 2018, 35(4): 401-409. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||