Chinese Journal of Applied Chemistry ›› 2022, Vol. 39 ›› Issue (3): 480-488.DOI: 10.19894/j.issn.1000-0518.210180
• Full Papers • Previous Articles Next Articles
Hong-Zhen PENG1,3,4, Yu ZHANG1,3, Lin-Jie GUO1,3, Wei SONG2(), Qing-Nuan LI1(), Xiang-Ying MENG2()
Received:
2021-04-10
Accepted:
2021-07-15
Published:
2022-03-01
Online:
2022-03-15
Contact:
Wei SONG,Qing-Nuan LI,Xiang-Ying MENG
About author:
wysw8103@163.com; liqingnuan@sinap.ac.cn; mengxiangying85730@126.comSupported by:
CLC Number:
Hong-Zhen PENG, Yu ZHANG, Lin-Jie GUO, Wei SONG, Qing-Nuan LI, Xiang-Ying MENG. Facile One⁃Step Synthesis of WS2@Au Quantum Dot Composite by in situ Reduction and Its Sensing Application[J]. Chinese Journal of Applied Chemistry, 2022, 39(3): 480-488.
Add to citation manager EndNote|Ris|BibTeX
URL: http://yyhx.ciac.jl.cn/EN/10.19894/j.issn.1000-0518.210180
Fig.2 (A) UV-Vis absorption spectra of WS2 QDs (a) and WS2@Au QDs (b). Inset: the magnified UV-Vis absorption peak of Au NPs. (B) UV-Vis absorption spectra of GOx (a) and GOx/WS2@Au QDs (b)
Fig.3 (A) CVs of bare GCE (a), WS2@Au QDs-N afion/GCE (b), GOx-Nafion/GCE (c), GOx/WS2 QDs-Nafion/GCE (d), and GOx/WS2@Au QDs-Nafion/GCE (e) in 0.1 mol/L pH=7.0 N2-saturated PBS at a scan rate of 100 mV/s. (B) Schematic illustration of the DET of GOx on the modified GCE. (C) The effect of scan rate on the direct electron transfer of GOx/WS2@Au QDs-Nafion/GCE. Plots of the anodic and cathodic peak currents vs. the scan rate. (D) The effect of electrolyte pH on the DET of GOx/WS2@Au QDs-Nafion/GCE. The plot of formal potential with pH
Fig.4 Electrocatalytic performance of the WS2@Au QD-based electrochemical biosensor(A) Cyclic voltammograms of GOx/WS2@Au QDs-Nafion/GCE in nitrogen-saturated (a), air-saturated (b), and oxygen-saturated PBS buffer (0.1 mol/L,pH=7.0) in the absence (c) and presence (d) of glucose, respectively. (B) Dependence of the decreased reduction peak current of the GOx/WS2@Au QDs-Nafion/GCE on the concentration of glucose. (C) Selectivity of our assay system for the determination of glucose
检测电极 Detection electrode | 线性范围 Linear range/(μmol·L-1) | 检测限 LOD/(μmol·L-1) | 参考文献 Reference |
---|---|---|---|
GOx/TiO2 NSA/carbon cloth electrode | 100~500 | 23.4 | [ |
GOx?Ag@C/Nafion/GCE | 50~2500 | 20 | [ |
Graphene/AuNPs/GOx/chitosan/gold electrode | 2 000~14 000 | 180 | [ |
GOx?PDA?Au?Fe3O4/MGCE | 20~1875 | 6.5 | [ |
GOx/NCNSs@CNFs/GCE | 12~1 000 | 2 | [ |
GOx/cage?like?PbS/Nafion/GCE | 50~1 450 | 10 | [ |
GOx?X?APTES/BDD | 15~400 | 10 | [ |
GOx/WS2@Au QDs?Nafion/GCE | 5~400 | 1.5 | 本工作 This work |
Table 1 Comparison of the analytical performances of different glucose biosensors
检测电极 Detection electrode | 线性范围 Linear range/(μmol·L-1) | 检测限 LOD/(μmol·L-1) | 参考文献 Reference |
---|---|---|---|
GOx/TiO2 NSA/carbon cloth electrode | 100~500 | 23.4 | [ |
GOx?Ag@C/Nafion/GCE | 50~2500 | 20 | [ |
Graphene/AuNPs/GOx/chitosan/gold electrode | 2 000~14 000 | 180 | [ |
GOx?PDA?Au?Fe3O4/MGCE | 20~1875 | 6.5 | [ |
GOx/NCNSs@CNFs/GCE | 12~1 000 | 2 | [ |
GOx/cage?like?PbS/Nafion/GCE | 50~1 450 | 10 | [ |
GOx?X?APTES/BDD | 15~400 | 10 | [ |
GOx/WS2@Au QDs?Nafion/GCE | 5~400 | 1.5 | 本工作 This work |
1 | HU Y L, HUANG Y, TAN C L, et al. Two-dimensional transition metal dichalcogenide nanomaterials for biosensing applications[J]. Mate Chem Front, 2017, 1(1): 24-36. |
2 | YANG G H, ZHU C Z, DU D, et al. Graphene-like two-dimensional layered nanomaterials: applications in biosensors and nanomedicine[J]. Nanoscale, 2015, 7(34): 14217-14231. |
3 | MONGA D, SHARMA S, SHETTI N P, et al. Advances in transition metal dichalcogenide-based two-dimensional nanomaterials[J]. Mater Today Chem, 2021, 19: 100399. |
4 | LIN T R, ZHONG L S, SONG Z P, et al. Visual detection of blood glucose based on peroxidase-like activity of WS2 nanosheets[J]. Biosens Bioelectron, 2014, 62: 302-307. |
5 | CHEN Q, CHEN J, GAO C J, et al. Hemin-functionalized WS2 nanosheets as highly active peroxidase mimetics for label-free colorimetric detection of H2O2 and glucose[J]. Analyst, 2015, 140(8): 2857-2863. |
6 | ROHAIZAD N, MAYORGA-MARTINEZ C C, SOFER Z, et al. 1T-Phase transition metal dichalcogenides (MoS2, MoSe2, WS2, and WSe2) with fast heterogeneous electron transfer: application on second-generation enzyme-based biosensor[J]. ACS Appl Mater Interfaces, 2017, 9(46): 40697-40706. |
7 | ZHOU L Y, YAN S C, WU H, et al. Facile sonication synthesis of WS2 quantum dots for photoelectrochemical performance[J]. Catalysts, 2017, 7(1) : 18. |
8 | ZHANG K Y, FU L, ZHANG W L, et al. Ultrasmall and monolayered tungsten dichalcogenide quantum dots with giant spin-valley coupling and purple luminescence[J]. ACS Omega, 2018, 3(9): 12188-12194. |
9 | BAI Y F, XU T B, LUONG J H T, et al. Direct electron transfer of glucose oxidase-boron doped diamond interface: a new solution for a classical problem[J]. Anal Chem, 2014, 86(10): 4910-4918. |
10 | NIRALA VINITA N R, PRAKASH R. One step synthesis of AuNPs@MoS2-QDs composite as a robust peroxidase- mimetic for instant unaided eye detection of glucose in serum, saliva and tear[J]. Sens Actuators B, 2018, 263: 109-119. |
11 | POLYAKOV A Y, YADGAROV L, POPOVITZ-BIRO R, et al. Decoration of WS2 nanotubes and fullerene-like MoS2 with gold nanoparticles[J]. J Phys Chem C, 2014, 118(4): 2161-2169. |
12 | SU S, ZHANG C, YUWEN L H, et al. Creating SERS hot spots on MoS2 nanosheets with in situ grown gold nanoparticles[J]. ACS Appl Mater Interfaces, 2014, 6(21): 18735-18741. |
13 | ZHANG M, ZHENG J, WANG J P, et al. Direct electrochemistry of cytochrome C immobilized on one dimensional Au nanoparticles functionalized magnetic N-doped carbon nanotubes and its application for the detection of H2O2[J]. Sens Actuators B, 2019, 282: 85-95. |
14 | MURPHY M, THEYAGARAJAN K, THENMOZHI K, et al. Direct electrochemistry of covalently immobilized hemoglobin on a naphthylimidazolium butyric acid ionic liquid/MWCNT matrix[J]. Colloid Surf B, 2021, 199: 111540. |
15 | NIU X L, XIE H, LUO G L, et al. Platinum-3D graphene oxide areogel nanocomposite for direct electrochemistry and electrocatalysis of horseradish peroxidase[J]. J Electrochem Soc, 2018, 165(14): B713-B719. |
16 | GENTIL S, CARRIÈRE M, COSNIER S, et al. Direct electrochemistry of bilirubin oxidase from magnaporthe orizae on covalently-functionalized MWCNT for the design of high-performance oxygen-reducing biocathodes[J]. Chem Eur J, 2018, 24(33): 8404-8408. |
17 | TAOTAO L, ZOU L, GUO X G, et al. Rising mesopores to realize direct electrochemistry of glucose oxidase toward highly sensitive detection of glucose[J]. Adv Funct Mater, 2019, 29(44): 1903026. |
18 | ZHANG K, ZHOU H, HU P, et al. The direct electrochemistry and bioelectrocatalysis of nitrate reductase at a gold nanoparticles/aminated graphene sheets modified glassy carbon electrode[J]. RSC Adv, 2019, 9: 37207-37213. |
19 | ZHANG D D, CHEN X, MA W N, et al. Direct electrochemistry of glucose oxidase based on one step electrodeposition of reduced graphene oxide incorporating polymerized L-lysine and its application in glucose sensing[J]. Mater Sci Eng C-Mater, 2019, 104: 109880. |
20 | KALIMUTHU P, BELAIDI A A, SCHWARZ G, et al. Chitosan-promoted direct electrochemistry of human sulfite oxidase[J]. J Phys Chem B, 2017, 121(39): 9149-9159. |
21 | CHEN H C, TU Y M, HOU C C, et al. Direct electron transfer of glucose oxidase and dual hydrogen peroxide and glucose detection based on water-dispersible carbon nanotubes derivative[J]. Anal Chim Acta, 2015, 867: 83-91. |
22 | YIN Z, JI Z, ZHANG W, et al. The glucose effect on direct electrochemistry and electron transfer reaction of glucose oxidase entrapped in a carbon nanotube-polymer matrix[J]. ChemistrySelect, 2020, 5(39): 12224-12231. |
23 | YANG Z J, CAO Y, LI J, et al. Platinum nanoparticles functionalized nitrogen doped graphene platform for sensitive electrochemical glucose biosensing[J]. Anal Chim Acta, 2015, 871: 35-42. |
24 | SAGLAM O, KIZILKAYA B, UYSAL H, et al. Biosensing of glucose in flow injection analysis system based on glucose oxidase-quantum dot modified pencil graphite electrode[J]. Talanta, 2016, 147: 315-321. |
25 | YUE Z, LISDAT F, PARAK W J, et al. Quantum-dot-based photoelectrochemical sensors for chemical and biological detection[J]. ACS Appl Mater Interfaces, 2013, 5(8): 2800-2814. |
26 | DU J, YU X P, DI J W. Comparison of the direct electrochemistry of glucose oxidase immobilized on the surface of Au, CdS and ZnS nanostructures[J]. Biosens Bioelectron, 2012, 37(1): 88-93. |
27 | ZHANG H F, MENG Z C, WANG Q, et al. A novel glucose biosensor based on direct electrochemistry of glucose oxidase incorporated in biomediated gold nanoparticles-carbon nanotubes composite film[J]. Sens Actuators B, 2011, 158(1): 23-27. |
28 | LIU J, HE Z M, KHOO S Y, et al. A new strategy for achieving vertically-erected and hierarchical TiO2 nanosheets array/carbon cloth as a binder-free electrode for protein impregnation, direct electrochemistry and mediator-free glucose sensing[J]. Biosens Bioelectron, 2016, 77: 942-949. |
29 | YANG Z J, TANG Y, LI J, et al. Facile synthesis of tetragonal columnar-shaped TiO2 nanorods for the construction of sensitive electrochemical glucose biosensor[J]. Biosens Bioelectron, 2014, 54: 528-533. |
30 | SUN W, GUO Y Q, JU X M, et al. Direct electrochemistry of hemoglobin on graphene and titanium dioxide nanorods composite modified electrode and its electrocatalysis[J]. Biosens Bioelectron, 2013, 42: 207-213. |
31 | WANG L X, BAI J, BO X J, et al. A novel glucose sensor based on ordered mesoporous carbon-Au nanoparticles nanocomposites[J]. Talanta, 2011, 83(5): 1386-1391. |
32 | WANG Y, NI Y N. Molybdenum disulfide quantum dots as a photoluminescence sensing platform for 2,4,6-trinitrophenol detection[J]. Anal Chem, 2014, 86(15): 7463-7470. |
33 | ZHOU X, DAI X X, LI J G, et al. A sensitive glucose biosensor based on Ag@C core-shell matrix[J]. Mater Sci Eng C-Mater, 2015, 49: 579-587. |
34 | LI J, YANG Z J, TANG Y, et al. Carbon nanotubes-nanoflake-like SnS2 nanocomposite for direct electrochemistry of glucose oxidase and glucose sensing[J]. Biosens Bioelectron, 2013, 41: 698-703. |
35 | PENG H P, LIANG R P, ZHANG L, et al. Facile preparation of novel core-shell enzyme-Au-polydopamine-Fe3O4 magnetic bionanoparticles for glucose sensor[J]. Biosens Bioelectron, 2013, 42: 293-299. |
36 | LIU S Q, JU H X. Reagentless glucose biosensor based on direct electron transfer of glucose oxidase immobilized on colloidal gold modified carbon paste electrode[J]. Biosens Bioelectron, 2003, 19(3): 177-183. |
37 | LAVIRON E. General expression of the linear potential sweep voltammogram in the case of diffusionless electrochemical systems[J]. J Electroanal Chem, 1979, 101(1): 19-28. |
38 | RAZMI H, MOHAMMAD-REZAEI R. Graphene quantum dots as a new substrate for immobilization and direct electrochemistry of glucose oxidase: application to sensitive glucose determination[J]. Biosens Bioelectron, 2013, 41: 498-504. |
39 | DENG C, CHEN J, CHEN X, et al. Direct electrochemistry of glucose oxidase and biosensing for glucose based on boron-doped carbon nanotubes modified electrode[J]. Biosens Bioelectron, 2008, 23(8): 1272-1277. |
40 | LUO X L, KILLARD A J, SMYTH M R. Reagentless glucose biosensor based on the direct electrochemistry of glucose oxidase on carbon nanotube-modified electrodes[J]. Electroanalysis, 2006, 18(11): 1131-1134. |
41 | PERIASAMY A P, CHANG Y J, CHEN S M, et al. Amperometric glucose sensor based on glucose oxidase immobilized on gelatin-multiwalled carbon nanotube modified glassy carbon electrode[J]. Bioelectrochemistry, 2011, 80(2): 114-120. |
42 | YANG Z J, TANG Y, LI J, et al. Facile synthesis of tetragonal columnar-shaped TiO2 nanorods for the construction of sensitive electrochemical glucose biosensor[J]. Biosens Bioelectron, 2014, 54: 528-533. |
43 | LI J, YANG Z, TANG Y, et al. Carbon nanotubes-nanoflake-like SnS2 nanocomposite for direct electrochemistry of glucose oxidase and glucose sensing[J]. Biosens Bioelectron, 2013, 41: 698-703. |
44 | PAKAPONGPAN S, POO-ARPORN R P. Self-assembly of glucose oxidase on reduced graphene oxide-magnetic nanoparticles nanocomposite-based direct electrochemistry for reagentless glucose biosensor[J]. Mater Sci Eng C-Mater, 2017, 76: 398-405. |
45 | HYUN K H, HAN S W, KOH W G, et al. Fabrication of biofuel cell containing enzyme catalyst immobilized by layer-by-layer method[J]. J Power Sources, 2015, 286: 197-203. |
46 | LIU J, HE Z, KHOO S Y, et al. A new strategy for achieving vertically-erected and hierarchical TiO2 nanosheets array/carbon cloth as a binder-free electrode for protein impregnation, direct electrochemistry and mediator-free glucose sensing[J]. Biosens Bioelectron, 2016, 77: 942-949. |
47 | SHAN C, YANG H, HAN D, et al. Graphene/AuNPs/chitosan nanocomposites film for glucose biosensing[J]. Biosens Bioelectron, 2010, 25(5): 1070-1074. |
48 | ZHANG X, LIU D, LI L, et al. Direct electrochemistry of glucose oxidase on novel free-standing nitrogen-doped carbon nanospheres@carbon nanofibers composite film[J]. Sci Rep-UK, 2015, 5: 9885. |
49 | LI J, TANG Y, YANG J, et al. Cage-like PbS nanostructure for the construction of novel glucose electrochemical biosensor[J]. Sens Actuators B, 2014, 190: 549-554. |
[1] | Tao WANG, Sha LIU, Bao-Lin LIU, Zhi-Xian GAO. Application of Biosensors Based on Aptamers and Antibodies in the Detection of Estradiol [J]. Chinese Journal of Applied Chemistry, 2022, 39(3): 374-390. |
[2] | SUN Li'na,LI Yan,GUO Hantao,HUANG Tingting,YAO Bixia,WENG Wen. Preparation of Nitrogen and Iron Co-doped Carbon Nanoparticles and Their Applications in Detection of Hydrogen Peroxide and Glucose [J]. Chinese Journal of Applied Chemistry, 2020, 37(3): 350-358. |
[3] | HUANG Xuewen, XU Sheng, ZHAO Wei, WEI Wei, LI Xiaojie, LIU Xiaoya. Hydrogen Peroxide Sensor Based on a Polymeric Self-assembled Nanoparticles-Modified Screen-Printed Electrode [J]. Chinese Journal of Applied Chemistry, 2020, 37(2): 235-241. |
[4] | MO Yanhong, LI Hui, WANG Bin, XU Xiaohui, LIU Sisi, ZENG Dongdong. Research on the Enhanced Activity of Hemin/G-Quadruplex DNAzyme and Its Application in Biosensors [J]. Chinese Journal of Applied Chemistry, 2020, 37(11): 1249-1261. |
[5] | WEI Guobing,KONG Derong,XU Huihui,YIN Zhaojiang,ZHANG Jing,CUI Hanfeng,HONG Nian,YANG Jie,XIONG Wei,LIU Wenming,GUO Qianwen,CHENG Lin,FAN Hao. A New Type of Electrochemiluminescence Sensor for Detection of Mercury Ion in Chinese Medicinal Materials Danshen Based on Host-Guest Interaction [J]. Chinese Journal of Applied Chemistry, 2019, 36(5): 595-602. |
[6] | QIN Xiaoli,WANG Minghan,DONG Yifan,SHAO Yuanhua. Electrochemiluminescent Biosensing and Its Application in Rapid Detection of Acute Myocardial Infarction Markers [J]. Chinese Journal of Applied Chemistry, 2018, 35(9): 1107-1112. |
[7] | YANG Shaoming, CHEN Yansheng, LI Ruiqin, LONG Qiyang, DING Suyou. One-step Preparation of Horseradish Peroxidase Biosensor via Electrodeposition [J]. Chinese Journal of Applied Chemistry, 2015, 32(7): 849-854. |
[8] | GAO Suyun, HAYIERBIEK Kulisong, ZENG Han. Performance of Biofuel Cell Based on 4-Mercaptobenzoic Acid Functionalized Nanoparticles Tethered with Glucose Oxidase and Laccase [J]. Chinese Journal of Applied Chemistry, 2015, 32(6): 708-719. |
[9] | LI Huiyan, BAI Xiaojing, WANG Fenghong, LI Jing, TANG Jilin. Microcantilever Biosensor for Detection of Adenosine Triphosphate [J]. Chinese Journal of Applied Chemistry, 2015, 32(3): 362-366. |
[10] | YANG Shaoming*, ZHA Wenling, SUN Qin, LI Hong, LI Ruiqin, SHANG Peiling. Label-free Elechochemical Aptasensor Based on Nickel Hexacyanoferrate for the Detection of Thrombin [J]. Chinese Journal of Applied Chemistry, 2014, 31(06): 742-748. |
[11] | QU Fengjin, CHEN Fang, HOU Xiuzhang, MA Xiaoyan*. Research Progress in the Sensor Application of Ferrocene and Its Derivatives [J]. Chinese Journal of Applied Chemistry, 2013, 30(12): 1393-1398. |
[12] | YANG Shaoming*, ZHA Wenling, LI Hong, SUN Qing, LIU Bin, ZHENG Longzhen. Label-free Aptamer Biosensor Based on Cysteine Blocker as the Electrochemical Redox Probe [J]. Chinese Journal of Applied Chemistry, 2013, 30(05): 549-554. |
[13] | AN Lingling1, CHANG Yingcui1, DU Jiangyan1,2,3*. A Novel Hydrogen Peroxide Biosensor Based on the Immobilization of Catalase on Three-Dimensionally Ordered Macroporous Graphene-doped Titanium Dioxide Film [J]. Chinese Journal of Applied Chemistry, 2013, 30(02): 171-177. |
[14] | WU Yuqin1, CHEN Jinlong2,3*. Sensitive Detection of L-Cysteine by Using Blue Luminescent Gold Quantum Dots [J]. Chinese Journal of Applied Chemistry, 2013, 30(02): 225-231. |
[15] | YANG Xiuyun1, LIANG Feng1,2, ZHANG Wei2, HU Lianzhe2, MAJEED Saadat2,3, LI Yunhui1, XU Gaobao2*. Recent Progress in Glucose Biosensors [J]. Chinese Journal of Applied Chemistry, 2012, 29(12): 1364-1370. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||