
Chinese Journal of Applied Chemistry ›› 2025, Vol. 42 ›› Issue (3): 386-395.DOI: 10.19894/j.issn.1000-0518.240425
• Full Papers • Previous Articles Next Articles
Ju-Ying XIAO1,2, Xia ZHAO1, Yuan LIN1(), Zhao-Hui SU1,2(
)
Received:
2024-12-24
Accepted:
2025-01-21
Published:
2025-03-01
Online:
2025-04-11
Contact:
Yuan LIN,Zhao-Hui SU
About author:
linyuan@ciac.ac.cnSupported by:
CLC Number:
Ju-Ying XIAO, Xia ZHAO, Yuan LIN, Zhao-Hui SU. Preparation and Investigation of Functional PEGylated Chitosan Nanoparticles[J]. Chinese Journal of Applied Chemistry, 2025, 42(3): 386-395.
Add to citation manager EndNote|Ris|BibTeX
URL: http://yyhx.ciac.jl.cn/EN/10.19894/j.issn.1000-0518.240425
Fig.1 (A) Amidation between CS and N3-PEG-COOH; (B) Preparation of CS-PEG nanoparticles via TPP ionotropic gelation crosslinking; (C) Click chemistry reaction between CS-PEG nanoparticles and fluorescent molecules
Sample | n(CS-NH2)∶n(PEG-COOH) | GW/% | Yield/% |
---|---|---|---|
CS-PEG 51 a CS-PEG 35 a CS-PEG 21 a | 1∶1 | 51.0 | 49.6 |
5∶1 | 34.9 | 93.9 | |
10∶1 | 20.9 | 95.5 | |
CS-PEG 77 b CS-PEG 36 b CS-PEG 35 b | 1∶1 | 77.0 | 60.0 |
5∶1 | 35.5 | 70.1 | |
10∶1 | 25.3 | 81.5 |
Table 1 GW and yield of CS-PEG at different feed ratios
Sample | n(CS-NH2)∶n(PEG-COOH) | GW/% | Yield/% |
---|---|---|---|
CS-PEG 51 a CS-PEG 35 a CS-PEG 21 a | 1∶1 | 51.0 | 49.6 |
5∶1 | 34.9 | 93.9 | |
10∶1 | 20.9 | 95.5 | |
CS-PEG 77 b CS-PEG 36 b CS-PEG 35 b | 1∶1 | 77.0 | 60.0 |
5∶1 | 35.5 | 70.1 | |
10∶1 | 25.3 | 81.5 |
Size/nm | PDI | ζ-potential/mV | |
---|---|---|---|
CS-PEG 51 | 95.2±17.3 | 0.30±0.08 | 6.8±1.5 |
CS-PEG 35 | 114.8±4.7 | 0.27±0.06 | 16.3±4.7 |
CS-PEG 21 | 170.9±19.1 | 0.29±0.05 | 24.8±0.6 |
CS-PEG 77 | 108.7±3.2 | 0.45±0.01 | 4.3±0.6 |
CS-PEG 36 | 116.4±5.0 | 0.55±0.09 | 6.6±0.4 |
CS-PEG 26 | 135.0±2.6 | 0.40±0.02 | 24.6±0.9 |
Table.2 The physicochemical properties of CS-PEG/TPP nanoparticles
Size/nm | PDI | ζ-potential/mV | |
---|---|---|---|
CS-PEG 51 | 95.2±17.3 | 0.30±0.08 | 6.8±1.5 |
CS-PEG 35 | 114.8±4.7 | 0.27±0.06 | 16.3±4.7 |
CS-PEG 21 | 170.9±19.1 | 0.29±0.05 | 24.8±0.6 |
CS-PEG 77 | 108.7±3.2 | 0.45±0.01 | 4.3±0.6 |
CS-PEG 36 | 116.4±5.0 | 0.55±0.09 | 6.6±0.4 |
CS-PEG 26 | 135.0±2.6 | 0.40±0.02 | 24.6±0.9 |
1 | SU L, FENG Y, WEI K, et al. Carbohydrate-based macromolecular biomaterials[J]. Chem Rev, 2021, 121(18): 10950-11029. |
2 | JIANG W, PENG J, JIANG N, et al. Chitosan phytate nanoparticles: a synergistic strategy for effective dental caries prevention[J]. ACS Nano, 2024, 18(21): 135284-13537. |
3 | 高添贺, 颜丽娟, 陈明清, 等. 高负载柠檬醛抗菌复合膜的制备与性能[J]. 应用化学, 2024, 41(9): 1284-1296. |
GAO T H, YAN L J, CHEN M Q, et al. Preparation and properties of antibacterial composite films with high loading of citral[J]. Chin J Appl Chem, 2024, 41(9): 1284-1296. | |
4 | 郑怀礼, 刘薇, 孙漫梨. 具有抗菌功能的天然高分子絮凝剂研究进展[J]. 应用化学, 2024, 41(2): 177-189. |
ZHENG H L, LIU W, SUN M L. Research progress of natural polymer flocculants with antibacterial function[J]. Chin J Appl Chem, 2024, 41(2): 177-189. | |
5 | 陈玉竹, 刘思思, 张蒙蒙, 等. 基于抗菌性壳聚糖/羧甲基纤维素复合药物涂层的聚氨酯敷料[J]. 应用化学, 2023, 40(2): 252-260. |
CHEN Y Z, LIU S S, ZHANG M M, et al. Polyurethane dressing based on antibacterial chitosan/carboxymethyl cellulose composite drug coating[J]. Chin J Appl Chem, 2023, 40(2): 252-260. | |
6 | XU Y, DU Y. Effect of molecular structure of chitosan on protein delivery properties of chitosan nanoparticles[J]. Int J Pharm, 2003, 250(1): 215-226. |
7 | ZHANG X, ZHANG H, WU Z, et al. Nasal absorption enhancement of insulin using PEG-grafted chitosan nanoparticles[J]. Eur J Pharm Biopharm, 2008, 68(3): 526-534. |
8 | GARG N K, DWIVEDI P, CAMPBELL C, et al. Site specific/targeted delivery of gemcitabine through anisamide anchored chitosan/poly ethylene glycol nanoparticles: an improved understanding of lung cancer therapeutic intervention[J]. Eur J Pharm Sci, 2012, 47(5): 1006-1014. |
9 | ZHU S, QIAN F, ZHANG Y, et al. Synthesis and characterization of PEG modified N-trimethylaminoethylmethacrylate chitosan nanoparticles[J]. Eur Polym J, 2007, 43(6): 2244-2253. |
10 | DING D, PU K Y, LI K, et al. Conjugated oligoelectrolyte-polyhedral oligomeric silsesquioxane loaded pH-responsive nanoparticles for targeted fluorescence imaging of cancer cell nucleus[J]. Chem Commun, 2011, 47(35): 9837-9839. |
11 | BEACH M A, NAYANATHARA U, GAO Y, et al. Polymeric nanoparticles for drug delivery[J]. Chem Rev, 2024, 124(9): 5505-5616. |
12 | MENDES B B, CONNIOT J, AVITAL A, et al. Nanodelivery of nucleic acids[J]. Nat Rev Method Prim, 2022, 2(1): 24. |
13 | LÓPEZ-LEÓN T, CARVALHO E L S, SEIJO B, et al. Physicochemical characterization of chitosan nanoparticles: electrokinetic and stability behavior[J]. J Colloid Interface Sci, 2005, 283(2): 344-351. |
14 | DENG H, ZHANG Y, CAI X, et al. Dual-targeted graphitic cascade nanozymes for recognition and treatment of Helicobacter pylori[J]. Small, 2024, 20(14): 2306155. |
15 | ENSIGN L M, HOEN T E, MAISEL K, et al. Enhanced vaginal drug delivery through the use of hypotonic formulations that induce fluid uptake[J]. Biomaterials, 2013, 34(28): 6922-6929. |
16 | TRIPATHI R M, HAMEED P, RAO R P, et al. Biosynthesis of highly stable fluorescent selenium nanoparticles and the evaluation of their photocatalytic degradation of dye[J]. Bionanosci, 2020, 10(2): 389-396. |
17 | JU X, CHEN J, ZHOU M, et al. Combating pseudomonas aeruginosa biofilms by a chitosan-peg-peptide conjugate via changes in assembled structure[J]. ACS Appl Mater Interfaces, 2020, 12(12): 13731-13738. |
18 | FAN W, YAN W, XU Z, et al. Formation mechanism of monodisperse, low molecular weight chitosan nanoparticles by ionic gelation technique[J]. Colloid Surf B-Biointerfaces, 2012, 90: 21-27. |
19 | LANCUŠKI A, FORT S, BOSSARD F. Electrospun azido-PCL nanofibers for enhanced surface functionalization by click chemistry[J]. ACS Appl Mater Interfaces, 2012, 4(12): 6499-6504. |
20 | KHATAMI N, GUERRERO P, MARTÍN P, et al. Valorization of biological waste from insect-based food industry: assessment of chitin and chitosan potential[J]. Carbohydr Polym, 2024, 324: 121529. |
21 | BHATTARAI N, RAMAY H R, GUNN J, et al. PEG-grafted chitosan as an injectable thermosensitive hydrogel for sustained protein release[J]. J Control Release, 2005, 103(3): 609-624. |
22 | JEONG Y I, KIM D G, JANG M K, et al. Preparation and spectroscopic characterization of methoxy poly(ethylene glycol)-grafted water-soluble chitosan[J]. Carbohydr Res, 2008, 343(2): 282-289. |
23 | MUSHTAQ A, LI L, ANITHA A, et al. Characterisation of products from EDC-mediated PEG substitution of chitosan allows optimisation of reaction conditions[J]. Int J Biol Macromol, 2022, 221: 204-211. |
24 | MUÑOZ-NUÑEZ C, CUERVO-RODRÍGUEZ R, ECHEVERRÍA C A, et al. Synthesis and characterization of thiazolium chitosan derivative with enhanced antimicrobial properties and its use as component of chitosan based films[J]. Carbohydr Polym, 2023, 302: 120438. |
25 | YUE L, WANG M, KHAN I M, et al. Preparation, characterization, and antibiofilm activity of cinnamic acid conjugated hydroxypropyl chitosan derivatives[J]. Int J Biol Macromol, 2021, 189: 657-667. |
26 | QUN G, AJUN W. Effects of molecular weight, degree of acetylation and ionic strength on surface tension of chitosan in dilute solution[J]. Carbohydr Polym, 2006, 64(1): 29-36. |
27 | SORLIER P, DENUZIÈRE A, VITON C, et al. Relation between the degree of acetylation and the electrostatic properties of chitin and chitosan[J]. Biomacromolecules, 2001, 2(3): 765-772. |
28 | SHU X Z, ZHU K J. The influence of multivalent phosphate structure on the properties of ionically cross-linked chitosan films for controlled drug release[J]. Eur J Pharm Biopharm, 2002, 54(2): 235-243. |
29 | ZHANG H, OH M, ALLEN C, et al. Monodisperse chitosan nanoparticles for mucosal drug delivery[J]. Biomacromolecules, 2004, 5(6): 2461-2468. |
30 | HUANG Y, CAI Y, LAPITSKY Y. Factors affecting the stability of chitosan/tripolyphosphate micro- and nanogels: resolving the opposing findings[J]. J Mat Chem B, 2015, 3(29): 5957-5970. |
31 | HU B, PAN C, SUN Y, et al. Optimization of fabrication parameters to produce chitosan-tripolyphosphate nanoparticles for delivery of tea catechins[J]. J Agric Food Chem, 2008, 56(16): 7451-7458. |
32 | WAYS T M M, FILIPPOV S K, MAJI S, et al. Mucus-penetrating nanoparticles based on chitosan grafted with various non-ionic polymers: synthesis, structural characterisation and diffusion studies[J]. J Colloid Interface Sci, 2022, 626: 251-264. |
33 | ECHEVERRI-CUARTAS C E, GARTNER C, LAPITSKY Y. PEGylation and folate conjugation effects on the stability of chitosan-tripolyphosphate nanoparticles[J]. Int J Biol Macromol, 2020, 158: 1055-1065. |
34 | MELO M N, PEREIRA F M, ROCHA M A, et al. Immobilization and characterization of horseradish peroxidase into chitosan and chitosan/PEG nanoparticles: a comparative study[J]. Process Biochem, 2020, 98: 160-171. |
35 | SCHEEREN L E, NOGUEIRA D R, MACEDO L B, et al. PEGylated and poloxamer-modified chitosan nanoparticles incorporating a lysine-based surfactant for pH-triggered doxorubicin release[J]. Colloid Surf B-Biointerfaces, 2016, 138: 117-127. |
36 | BHATTACHARJEE S. DLS and zeta potential-what they are and what they are not?[J]. J Control Release, 2016, 235: 337-351. |
37 | FILIPPOV S K, KHUSNUTDINOV R, MURMILIUK A, et al. Dynamic light scattering and transmission electron microscopy in drug delivery: a roadmap for correct characterization of nanoparticles and interpretation of results[J]. Mater Horizons, 2023, 10(12): 5354-5370. |
38 | HE C, HU Y, YIN L, et al. Effects of particle size and surface charge on cellular uptake and biodistribution of polymeric nanoparticles[J]. Biomaterials, 2010, 31(13): 3657-3666. |
39 | QI G, WANG S, YIN Q, et al. A pH-responsive nanoplatform based on magnetic mesoporous silica nanoparticles for enhanced treatment of pancreatic cancer[J]. ACS Appl Nano Mater, 2023, 6(24): 23184-23195. |
40 | TAVASSOLI M, KHEZERLOU A, HAMISHEHKAR H, et al. An ultrasensitive aptamer-based fluorescent on/off system for trace amount evaluation of Yersinia enterocolitica in food samples[J]. Microchim Acta, 2023, 190(7): 253. |
41 | HU M, GAO H, ZHOU H, et al. Construction and properties of fluorescence imaging and targeted delivery of UIO-66-NH2 based light-responsive CO releasing material[J]. J Solid State Chem, 2023, 327: 124292. |
[1] | Tian-He GAO, Li-Juan YAN, Ming-Qing CHEN, Wei-Fu DONG, Dong-Jian SHI. Preparation and Properties of Antibacterial Composite Films with High Loading of Citral [J]. Chinese Journal of Applied Chemistry, 2024, 41(9): 1284-1296. |
[2] | Ling-Xiao WANG, Shan GAO, Wan-Yu WEI, Ning-Bo LI, Jie QIAO, Chuan DONG. Synthesis and Drug Loading Performance of pH-Responsive Magnetic Nanocomposites [J]. Chinese Journal of Applied Chemistry, 2024, 41(6): 861-869. |
[3] | Na YIN, Ying-Hui WANG, Hong-Jie ZHANG. Applications of Rare Earth-Based Nanoparticles in Brain Tumors [J]. Chinese Journal of Applied Chemistry, 2024, 41(3): 309-327. |
[4] | Yang SHU, Man YANG, Zhi-Hao LI, Jian-Hua WANG. MicroRNA Sensing Based on Gold Nanoparticle Aggregation and Hybridization Chain Amplification [J]. Chinese Journal of Applied Chemistry, 2024, 41(1): 109-117. |
[5] | Xue-Min ZHOU, Shu-Zhen LYU, Guo-Fang ZHANG, Zhu-Mei CUI, Sai BI. A Near-Infrared-Driven Signal Amplification Fluorescence Biosensor Based on Upconversion Beacon Probe for microRNA Detection [J]. Chinese Journal of Applied Chemistry, 2024, 41(1): 137-146. |
[6] | Yi XU, Meng-Yao LIN, Xiao-Qun GONG. Research Progress of Multicolor Colorimetric Method in Biosensing Platform [J]. Chinese Journal of Applied Chemistry, 2024, 41(1): 3-20. |
[7] | Yu-Xuan LI, Yu-Hao ZHAO, Yu-Ze DAI, Min JIANG, Ying ZHANG, Guang-Yuan ZHOU. Preparation and Characterization of Poly(ethylene 2,5-furandicarboxylate)/TiO2 Nanoparticles/ Diatomaceous Earth Composites [J]. Chinese Journal of Applied Chemistry, 2023, 40(9): 1277-1287. |
[8] | Yu-Wen YANG, Jing-Yao QI, Lin LI, Guo-Ning CHU, Sai WANG, Yu ZHANG, Shuang ZHANG. Selective Oxidation of 5-Hydroxymethylfurfural to 2,5-Furandicarboxylic Acid over Ru Supported on Magnetic NiFe2O4 [J]. Chinese Journal of Applied Chemistry, 2023, 40(6): 879-887. |
[9] | Yu-Zhu CHEN, Si-Si LIU, Meng-Meng ZHANG, Xiang-De LIN, Dong-Dong ZENG. Polyurethane Dressing Based on Antibacterial Chitosan/Carboxymethyl Cellulose Composite Drug Coating [J]. Chinese Journal of Applied Chemistry, 2023, 40(2): 252-260. |
[10] | Ding ZHANG, Wei-Wei YANG, Song-Song MIAO, Yi SU. Au Nanoparticles Confined in N-Doped Porous Carbon for Detection of Chlorine Dioxide in Liquid Phase [J]. Chinese Journal of Applied Chemistry, 2023, 40(11): 1572-1580. |
[11] | Xu-Juan HUANG, Ting WANG, Zheng-Qing DING, Xin-Xin YANG, Zhao-Sheng CAI, Shi-Bing SHANG. Preparation of Hydrogels Based on Dehydroabietyl Polyoxyethylene Glycidyl Ether Grafted Hydroxyethyl Chitosan and Their Properties [J]. Chinese Journal of Applied Chemistry, 2022, 39(9): 1421-1428. |
[12] | Ye LIU, Shao-Bo GUO, Yan-Li LIANG, Hong-Guang GE, Jian-Qi MA, Zhi-Feng LIU, Bo LIU. Preparation and Catalytic Performance of Core‑Shell CuFe2O4@NH2@Pt Nanocomposites [J]. Chinese Journal of Applied Chemistry, 2022, 39(8): 1237-1245. |
[13] | Wen-Dong WANG, Zai-Jun LI. Synthesis of Ruthenium‑Graphene Quantum Dots Artificial Oxidase and Its Application in Colorimetric Detection of Phoxim in Carrots [J]. Chinese Journal of Applied Chemistry, 2022, 39(8): 1285-1293. |
[14] | Feng-Zhou XU, Hua-Ying TANG, Wu-Hui LIU, Yi-Feng JIANG, Wen-Kai LI, Xian-Hai LU. A Visual Semi⁃quantitative Method for Rapid Detection of Copper Ion in Water [J]. Chinese Journal of Applied Chemistry, 2022, 39(8): 1303-1311. |
[15] | Tao GONG, Chao-Chao WEN, Kai-Li QIN, Ying-Zhu ZAHO, Yu-Qi ZHANG, Wen-Ting LIANG, Chuan DONG. Preparation of Formyl Deoxycholic Acid Modified Fe3O4 Nanoparticles and Their Application for Oxytetracycline Loading [J]. Chinese Journal of Applied Chemistry, 2022, 39(12): 1920-1926. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||