应用化学 ›› 2024, Vol. 41 ›› Issue (10): 1491-1501.DOI: 10.19894/j.issn.1000-0518.240120
收稿日期:
2024-04-11
接受日期:
2024-07-30
出版日期:
2024-10-01
发布日期:
2024-10-29
通讯作者:
贾宏敏,于洪梅
基金资助:
De-Jin TIE, Mei-Jia XU, Xiao-Dan TANG, Hong-Min JIA(), Hong-Mei YU()
Received:
2024-04-11
Accepted:
2024-07-30
Published:
2024-10-01
Online:
2024-10-29
Contact:
Hong-Min JIA,Hong-Mei YU
About author:
seesea0304@163.comSupported by:
摘要:
pH和水的检测在生命科学和化学工业中是至关重要的。 对以中性红(NR)为碳源,乙二胺(EDA)为氮源,乙醇为溶剂,溶剂热法合成的黄色荧光碳点(NR-EDA-CDs)进行了研究,发现该碳点在激发波长为310~370 nm范围时,可以产生双发射峰。 由此,建立了基于单一发光剂的双比率荧光探针检测pH和水的方法。 通过高分辨透射电子显微镜(HRTEM)、X射线衍射(XRD)、拉曼光谱、红外光谱(IR)和X射线光电子能谱(XPS)对该碳点进行了表征,表明该碳点的形状为类球形,平均粒径为3.6 nm,有明显的石墨结构。 研究发现,在365 nm激发波长下,该碳点具有良好的稳定性、抗光漂白性和耐盐性。 在磷酸盐缓冲溶液中,pH值在4.15~8.55范围内与581和449 nm的荧光强度比(F581/F449)具有良好的线性关系,其决定系数R2=0.986。该pH比率荧光探针具有线性范围宽和可逆性好等特点。 同时发现在二甲基亚砜溶剂中,水的含量在0.6%~50%(V(H2O)/V(DMSO))范围内与F485/F585具有良好的线性,其决定系数R2=0.996,检出限为0.18%(V(H2O)/V(DMSO))。 该双比率荧光探针为pH和水的检测提供了一种新的方法。
中图分类号:
铁德金, 许美佳, 唐晓丹, 贾宏敏, 于洪梅. 一种可用于检测pH和H2O的双比率荧光探针[J]. 应用化学, 2024, 41(10): 1491-1501.
De-Jin TIE, Mei-Jia XU, Xiao-Dan TANG, Hong-Min JIA, Hong-Mei YU. A Double Ratio Fluorescent Probe for pH and Water Detection[J]. Chinese Journal of Applied Chemistry, 2024, 41(10): 1491-1501.
图2 NR-EDA-CDs的(A)HRTEM(内插图为粒径分布统计图)、(B)晶格间距图、(C)XRD和(D)拉曼光谱图
Fig.2 (A) HRTEM (Inset: the particle size distribution statistics), (B) lattice spacing, (C) XRD and (D) Raman spectrum of NR-EDA-CDs
图4 NR-EDA-CDs的XPS全谱图(A);NR-EDA-CDs的高分辨XPS的C1s (B)、O1s (C)和N1s (D)谱图
Fig.4 (A) XPS of NR-EDA-CDs; High-resolution XPS spectra of C1s (B), O1s (C) and N1s (D) of NR-EDA-CDs
图5 (A) NR-EDA-CDs水溶液的紫外吸收光谱; (B)不同激发波长下NR-EDA-CDs的荧光发射光谱图
Fig.5 (A) UV absorption spectrum of NR-EDA-CDs; (B) Fluorescence emission spectra of NR-EDA-CDs at different excitation wavelengths
图6 NR-EDA-CDs的比率荧光在365 nm紫外光(A)照射下及在NaCl(0~1.0 mol/L)溶液中(B)的稳定性
Fig.6 Ratio fluorescence stabilities of NR-EDA-CDs under UV light (A) and 0~1.0 mol/L NaCl solution (B)
图7(A) NR-EDA-CDs在不同pH值的磷酸盐缓冲液中颜色变化图; (B) NR-EDA-CDs在不同pH值下的荧光光谱; (C) F581/F449与pH值的线性关系图; (D) pH值在4和8之间切换F581/F449的可逆性
Fig.7 (A) Color changes of NR-EDA-CDs in phosphate buffers with different pH values; (B) Fluorescence of NR-EDA-CDs at different pH; (C) Linear relationship between F581/F449 and pH; (D) The reversibility of F581/F449 switching between pH=4 and 8
Probe | Method | Linear range | Ref. |
---|---|---|---|
ABMP | Direct fluorescent probe | 2.4~4 | [ |
PHHF | Ratio fluorescence probe | 3.24~6 | [ |
Probe L | Ratio fluorescence probe | 4.5~6 | [ |
RTPH | Direct fluorescent probe | 1.87~4.48 | [ |
Probe 1-1 | Direct fluorescent probe | 1.69~3.38 | [ |
Probe 1-2 | Direct fluorescent probe | 1.78~2.52 | [ |
Y-G-CDs | Direct fluorescent probe | 5.9~7.7 | [ |
Y-G-CDs | Ratio fluorescence probe | 5.9~8.0 | [ |
Green CDs | Direct fluorescent probe | 4.5~8.5 | [ |
NR-EDA-CDs | Ratio fluorescence probe | 4.15~8.55 | This work |
表1 荧光检测pH范围文献对照表
Table 1 Comparison of literature on pH range of fluorescence detection
Probe | Method | Linear range | Ref. |
---|---|---|---|
ABMP | Direct fluorescent probe | 2.4~4 | [ |
PHHF | Ratio fluorescence probe | 3.24~6 | [ |
Probe L | Ratio fluorescence probe | 4.5~6 | [ |
RTPH | Direct fluorescent probe | 1.87~4.48 | [ |
Probe 1-1 | Direct fluorescent probe | 1.69~3.38 | [ |
Probe 1-2 | Direct fluorescent probe | 1.78~2.52 | [ |
Y-G-CDs | Direct fluorescent probe | 5.9~7.7 | [ |
Y-G-CDs | Ratio fluorescence probe | 5.9~8.0 | [ |
Green CDs | Direct fluorescent probe | 4.5~8.5 | [ |
NR-EDA-CDs | Ratio fluorescence probe | 4.15~8.55 | This work |
图8 (A) NR-EDA-CDs在585 nm处的荧光强度与pH值的Sigmoidal拟合; (B)阴阳离子和(C)氨基酸对F581/F449的影响
Fig.8 (A) Sigmoidal fitting of the pH-dependent fluorescence at 585 nm for NR-EDA-CDs; Effects of anions and cations (B) with amino acids (C) on F581/F449
图9 (A) NR-EDA-CDs在不同溶剂中的荧光光谱; (B) F585/F435与不同溶剂的柱状图
Fig.9 (A) Fluorescence spectra of NR-EDA-CDs in different solvents; (B) Histogram of F585/F435 with different solvents
图10 (A) NR-EDA-CDs-DMSO中加入水的荧光图; (B)F485/F585与加入的水含量的线性拟合关系图; (C)向NR-EDA-CDs-DMSO中加入DMSO的荧光图; (D) F485/F585与加入的DMSO含量的关系图
Fig.10 (A) Fluorescence of adding water to CDs-DMSO; (B) The linear fitting relationship diagram of F485/F585 and water content; (C) Fluorescence of adding DMSO to CDs-DMSO; (D) The relationship diagram of F485/F585 and DMSO content
图11 (A)水稀释NR-EDA-CDs-DMSO的紫外光谱图; (B) DMSO稀释NR-EDA-CDs-DMSO的紫外光谱图
Fig.11 (A) UV spectra of NR-EDA-CDs-DMSO diluted with water; (B) UV spectra of NR-EDA-CDs-DMSO diluted with DMSO
1 | SHEN S H, YANG Y J, LUO X, et al.Hill-type pH probes[J]. Anal Bioanal Chem, 2023, 415: 3693-3702. |
2 | MEI H H, GU X, WANG M H, et al.A tri-response colorimetric-fluorescent probe for pH and lysosomal imaging[J]. Sens Actuators B: Chem, 2022, 370: 132425. |
3 | MA J B, LI W Q, LI J J, et al. A small molecular pH-dependent fluorescent probe for cancer cell imaging in living cell[J]. Talanta, 2018, 182: 464-469. |
4 | HU F, HUANG Y X, XIAO Y S, et al. A dual-channel Hill-type small-molecule pH probe[J]. Anal Methods, 2021, 13: 3012-3016. |
5 | CHEN W J, MA X X, CHEN H J, et al. Fluorescent probes for pH and alkali metal ions[J]. Coord Chem Rev, 2021, 427: 213584. |
6 | 胡娅琪, 张博, 秦蓓. 具有pH响应碳点的制备及其荧光分析[J]. 分析实验室, 2022, 41(7): 821-825. |
HU Y Q, ZHANG B, QIN B. Preparation of pH-responsive carbon dots and fluorescence analysis[J]. Chin J Anal Lab, 2022, 41(7): 821-825. | |
7 | 郑星星, 但飞君, 韩雅莲, 等. 苯并咪唑喹啉比率型pH荧光探针的合成及应用[J]. 分析试验室, 2017, 36(12): 1394-1397. |
ZHENG X X, DAN F J, HAN Y L, et al. Synthesis and application of the ratiometric pH fluorescent probe based on benzimidazole quinoline[J]. Chin J Anal Lab, 2017, 36(12): 1394-1397. | |
8 | 袁跃华, 卫迎洁, 付晓璐, 等. 基于三苯胺-罗丹明染料荧光探针对pH和Cu2+的选择性识别[J]. 分析实验室, 2020, 39(2): 197-202. |
YUAN Y H, WEI Y J, FU X L, et al. Selective recognition of a fluorescence probe for pH and Cu2+ based on triphenylamine-rhodamine dyes[J]. Chin J Anal Lab, 2020, 39(2): 197-202. | |
9 | WANG H L, SUN Y S, LIN X M, et al. Multi-organelle-targeting pH-dependent NIR fluorescent probe for lysosomal viscosity[J]. Chin Chem Lett, 2023, 34: 107626. |
10 | WANG J D, HUO F J, ZHANG Y B, et al. Spiropyran isomerization triggering ESIPT for visualization of pH fluctuations during oxidative stress in living cells[J]. Chin Chem Lett, 2023, 34: 107818. |
11 | LIU W J, LI C, SUN X B, et al. Carbon-dot-based ratiometric fluorescent pH sensor for the detections of very weak acids assisted by auxiliary reagents that contribute to the release of protons[J]. Sens Actuators B: Chem, 2017, 244: 441-449. |
12 | JUNG H S, VERWILST P, KIM W Y, et al. Fluorescent and colorimetric sensors for the detection of humidity or water content[J]. Chem Soc Rev, 2016, 45: 1242-1256. |
13 | FRINK L A, ARMSTRONG D W. Determination of trace water content in petroleum and petroleum products[J]. Anal Chem, 2016, 88: 8194-8201. |
14 | KUMAR P, KAUSHIK R, GHOSH A, et al. Detection of moisture by fluorescent OFF-ON sensor in organic solvents and raw food products[J]. Anal Chem, 2016, 88: 11314-11318. |
15 | WEHNER T, SEUFFERT M T, SORG J R, et al. Composite materials combining multiple luminescent MOFs and superparamagnetic microparticles for ratiometric water detection[J]. J Mater Chem C, 2017, 5: 10133-10142. |
16 | LI R, HOU X, YUAN M, et al. Carbon dots synthesized and its applications in the detection of chlortetracycline and water based on the aggregation-induced emission[J]. ChemistrySelect, 2020, 5(2): 649-654. |
17 | CHAO D Y, LYU W, LIU Y B, et al. Solvent-dependent carbon dots and their applications in the detection of water in organic solvents[J]. J Mater Chem C, 2018, 6(28): 7527-7532. |
18 | PENG H, LI Y, JIANG C, et al. Tuning the properties of luminescent nitrogen-doped carbon dots by reaction precursors[J]. Carbon, 2016, 100: 386-394. |
19 | 高东, 张煜亮, 孙静, 等. 一步法合成特异性pH响应碳量子点及其发光机理研究[J]. 无机材料学报, 2019, 34(12): 1309-1315. |
GAO D, ZHANG Y L, SUN J, et al. One-step synthesis of specific pH-responsive carbon quantum dots and their luminescence mechanism[J]. Chin J Inorg Mater, 2019, 34(12): 1309-1315. | |
20 | WANG J, WANG J Y, XIAO W X, et al. Lignin-derived red-emitting carbon dots for colorimetric and sensitive fluorometric detection of water in organic solvents[J]. Anal Methods, 2020, 12(25): 3218-3224. |
21 | RAVI S, JAYARAJ M K. Sustainable carbon dots as 'turn-off' fluorescence sensor for highly sensitive Pb2+ detection[J]. Emergent Mater, 2020, 3(1): 51-56. |
22 | ALIZADEH N, SALIMI A. Polymer dots as a novel probe for fluorescence sensing of dopamine and imaging in single living cell using droplet microfluidic platform[J]. Anal Chimi Acta, 2019, 1091: 40-49. |
23 | GAO W, SONG H, WANG X, et al. Carbon dots with red emission for sensing of Pt2+, Au3+, and Pd2+ and their bioapplications in vitro and in vivo[J]. ACS Appl Mater Interfaces, 2018, 10(1): 1147-1154. |
24 | JIAO Y, GAO Y, MENG Y, et al. One-step synthesis of label-free ratiometric fluorescence carbon dots for the detection of silver ions and glutathione and cellular imaging applications[J]. ACS Appl Mater Interfaces, 2019, 11(18): 16822-16829. |
25 | 王筱楠, 胡利明, 孙国辉, 等. 一种低 pH 响应的新型近红外菁类荧光探针[J]. 化学试剂, 2023, 45(9): 83-89. |
WANG X N, HU M L, SUN G H, et al, A novel heptamethine cyanines near-infrared fluorescent probe for low pH monitoring[J]. Chem Reag, 2023, 45(9): 83-89. | |
26 | 杨 尧, 张晟瑞. 黄绿色荧光碳点 pH荧光/比色双模式检测纳米探针及在荧光绘画中的应用[J]. 分析实验室, 2022, 41(9): 1021-1024. |
YANG Y, ZHANG S R. Yellow-green fluorescent carbon dots as fluorescent/colorimetric dual-mode probe for the detection of pH value and its application in fluorescent painting[J]. Chin J Anal Lab, 2022, 41(9): 1021-1024. | |
27 | 康亚超, 黄园媛, 孙化振, 等. 硝酸辅助合成水溶性绿光碳点及其在pH测量与Fe3+检测中的应用[J]. 无机化学学报, 2020, 36(9): 1744-1752. |
KANG Y C, HUANG Y Y, SUN H Z, et al. Nitric acid assisted synthesis of water-soluble green fluorescent carbon dots for pH measurement and Fe3+ ions detection[J]. Chin J Inorg Chem, 2020, 36(9): 1744-1752. |
[1] | 崔赛, 孟雅婷, 王松柏, 董川, 双少敏. 溶剂依赖型碳点的制备及水含量检测和防伪应用[J]. 应用化学, 2024, 41(7): 937-947. |
[2] | 王灵晓, 高杉, 韦皖豫, 李宁波, 乔洁, 董川. pH响应型磁性纳米复合材料的合成及其载药性能[J]. 应用化学, 2024, 41(6): 861-869. |
[3] | 胡彪, 王会, 张振迎, 薛道荣, 刘抢. NH4Al(SO4)2·12H2O脱水过程及其热力学与动力学性能[J]. 应用化学, 2024, 41(5): 668-676. |
[4] | 刘思蓓, 梅竣乔, 谢谨裕, 刘轶君, 邓凤霞, 邱珊. 活性炭强化泡沫钛基空气扩散电极电过臭氧氧化及降解布洛芬效能[J]. 应用化学, 2024, 41(2): 279-296. |
[5] | 于盼, 王光辉, 郭建花, 郭峤志, 董川. 黄色荧光碳点用于盐酸金霉素的检测[J]. 应用化学, 2023, 40(7): 1017-1023. |
[6] | 谢信涛, 江桑铌, 于喜飞. 苯硼酸选择性结合的pH响应脂质体用于药物递送[J]. 应用化学, 2023, 40(6): 860-870. |
[7] | 胡靖怡, 郑雅桐, 叶炜浩, 刘应亮. N-杂环芳基水溶性碳点全光谱紫外吸收剂的合成与应用[J]. 应用化学, 2023, 40(12): 1700-1711. |
[8] | 王睿哲, 胡广齐, 叶炜浩, 胡超凡, 庄健乐, 雷炳富, 李唯, 刘应亮. 一种高紫外-短波蓝光屏蔽的油溶性碳点的水热制备及其应用[J]. 应用化学, 2023, 40(1): 59-68. |
[9] | 杨振华, 孙宣森, 张月霞, 曹宇娟, 张琪琦, 郭峤志, 范小鹏, 李忠平, 董川. 氮硫共掺杂碳点的制备及其对牛奶中土霉素的检测[J]. 应用化学, 2022, 39(9): 1382-1390. |
[10] | 郭佳昕, 刘洋, 徐长山, 刘晓男, 程亮. 不同pH值下MgO NPs悬浮液中Mg2+质量浓度的动态变化及其对小麦生长的影响[J]. 应用化学, 2022, 39(9): 1401-1411. |
[11] | 王兵, 唐敏, 王颖, 刘志光. 微氧化烧结制备掺杂Y2O3的SiC陶瓷及含镉模拟废水处理[J]. 应用化学, 2022, 39(8): 1312-1318. |
[12] | 齐海燕, 张琛琪, 李金龙, 李军. 氮硫掺杂碳点的制备及检测铜离子[J]. 应用化学, 2022, 39(6): 980-989. |
[13] | 严磊, 毛秀海, 左小磊. 酸性条件下的DNA构象变化加速DNA变性解链[J]. 应用化学, 2022, 39(5): 837-842. |
[14] | 宋金萍, 马琦, 梁晓敏, 尚建鹏, 董川. 高荧光量子产率钕、氮双掺杂碳点用于柳氮磺吡啶检测及Hela细胞成像[J]. 应用化学, 2022, 39(11): 1726-1734. |
[15] | 孟丹, 郑开元, 陈珊珊, 卓钊龙, 王丽丽. 硅、氮共掺杂碳点荧光粉的制备及发光性能[J]. 应用化学, 2022, 39(11): 1766-1773. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||