应用化学 ›› 2024, Vol. 41 ›› Issue (7): 937-947.DOI: 10.19894/j.issn.1000-0518.230372
崔赛1, 孟雅婷1,2, 王松柏1, 董川1, 双少敏1()
收稿日期:
2023-11-28
接受日期:
2024-05-06
出版日期:
2024-07-01
发布日期:
2024-08-03
通讯作者:
双少敏
基金资助:
Sai CUI1, Ya-Ting MENG1,2, Song-Bai WANG1, Chuan DONG1, Shao-Min SHUANG1()
Received:
2023-11-28
Accepted:
2024-05-06
Published:
2024-07-01
Online:
2024-08-03
Contact:
Shao-Min SHUANG
About author:
smshuang@sxu.edu.cnSupported by:
摘要:
以二苯氨基-4-苯甲醛和邻苯二胺为前驱体,乙醇为溶剂,采用溶剂热法合成了具有高量子产率(QY=87.76%)的氮掺杂荧光碳点(N-CDs)。 通过对有机溶剂和水溶液中N-CDs光学性质的考察,表明N-CDs具有良好的溶剂依赖性和化学稳定性。 水的加入在N-CDs中构建氢键网格,从而实现了发射波长的红移,N-CDs溶液由蓝色变为黄色。 进一步,基于N-CDs荧光试纸蓝色到黄色的可逆颜色变化,制备便携的空气湿度可视化检测试纸。 此外,N-CDs还可用于荧光墨水、书写纸和荧光柔性薄膜,拓展了其在信息传递,高级防伪加密和固态荧光的应用。
中图分类号:
崔赛, 孟雅婷, 王松柏, 董川, 双少敏. 溶剂依赖型碳点的制备及水含量检测和防伪应用[J]. 应用化学, 2024, 41(7): 937-947.
Sai CUI, Ya-Ting MENG, Song-Bai WANG, Chuan DONG, Shao-Min SHUANG. Preparation of Solvent-Dependent Carbon Dots for Water Content Detection and Anti-Counterfeiting[J]. Chinese Journal of Applied Chemistry, 2024, 41(7): 937-947.
图1 (A) N-CDs的TEM图像、 (B) TEM粒径分布图、 (C) AFM图像及(D) AFM粒径统计图像
Fig.1 (A) TEM image, (B) TEM size distribution, (C) AFM image and (D) AFM size distribution image of N-CDs
图2 (A) N-CDs的XPS全谱; 高分辨率(B) C1s谱、(C) N1s谱、(D) O1s谱和(E) FT-IR光谱
Fig.2 (A) XPS spectra of N-CDs; The high-resolution XPS spectra of (B) C1s, (C) N1s (D) O1s and (E) FT-IR spectrum of N-CDs
图3 (A) N-CDs的紫外可见吸收光谱和激发发射光谱; (B)不同激发波长下的荧光光谱; (C) 3D荧光光谱;(D)荧光寿命衰减曲线
Fig.3 (A) The UV-visible absorption and excitation-emission spectra; (B) Fluorescence spectra at different excitation wavelengths; (C) 3D fluorescence spectra; (D) Fluorescence lifetime decay curve of N-CDs
Quinine sulfate | N-CDs | |||||||||
---|---|---|---|---|---|---|---|---|---|---|
Abs | 0.018 | 0.024 | 0.025 | 0.031 | 0.043 | 0.013 | 0.023 | 0.029 | 0.044 | 0.050 |
Integrated FL intensity/a.u. | 112.223 | 145.650 | 178.785 | 219.476 | 347.290 | 252.846 | 308.065 | 453.895 | 664.643 | 758.695 |
Grad | 9 548.2 | 14 346 | ||||||||
QY/% | 56.1 | 87.76 |
表1 硫酸奎宁和N-CDs 在360 nm激发波长下的光致发光强度与吸光度的相关数据
Table 1 Relevant data of integrated fluorescence intensity and absorbance of Quinine sulfate and N-CDs at 360 nm excitation wavelength
Quinine sulfate | N-CDs | |||||||||
---|---|---|---|---|---|---|---|---|---|---|
Abs | 0.018 | 0.024 | 0.025 | 0.031 | 0.043 | 0.013 | 0.023 | 0.029 | 0.044 | 0.050 |
Integrated FL intensity/a.u. | 112.223 | 145.650 | 178.785 | 219.476 | 347.290 | 252.846 | 308.065 | 453.895 | 664.643 | 758.695 |
Grad | 9 548.2 | 14 346 | ||||||||
QY/% | 56.1 | 87.76 |
图4 (A)不同氙灯照射时间; (B)室温下存储时间对N-CDs荧光强度的影响
Fig.4 Effect of (A) different xenon lamp irradiation times; (B) Storage time at room temperature on the fluorescence intensity of N-CDs
图5 N-CDs在不同溶剂中的(A)紫外吸收光谱、(B)荧光最佳发射峰、(C)日光和紫外灯下的图片(从左到右溶剂依次为THF、丙酮、DMF、DMS0、乙醇、甲醇、水)、(D)荧光峰位置随相对极性参数(ETN)的变化
Fig.5 (A) The UV-visible absorpton spectra, (B) optimal fluorescence emission peak, (C) lmages in sunlight and ultraviolet light (The solvents from left to right are THF, acetone,DMF, DMSO, ethanol, methanol,water), (D) the emission peak position varies with relative polarity parameter (ETN) of N-CDs in different solvents
图6 (A) N-CDs随水含量变化的归一化荧光光谱图; (B)不同水体积分数的色坐标图; (C)紫外灯下不同水体积分数(从左到右水的图体积分数分别为2%、10%、20%、30%、40%、50%、60%、70%、80%、90%、98%)
Fig.6 (A) The normalized fluorescence spectra; (B)Color coordinate graph of different water volume fraction; (C) The ultraviolet light images of N-CDs with water volume fraction (The volume fractions of water from left to right are 2%, 10%, 20%, 30%, 40%, 50%, 60%, 70%,80%, 90% and 98%, respectively)
S. N | Water volume fractions in EtOH/% | (x, y) |
---|---|---|
1 | 2 | (0.15, 0.12) |
2 | 10 | (0.18, 0.20) |
3 | 20 | (0.18, 0.22) |
4 | 30 | (0.20, 0.27) |
5 | 40 | (0.23, 0.37) |
6 | 50 | (0.23, 0.38) |
7 | 60 | (0.23, 0.38) |
8 | 70 | (0.26, 0.39) |
9 | 80 | (0.29, 0.41) |
10 | 90 | (0.33, 0.44) |
11 | 98 | (0.40, 0.50) |
表2 N-CDs在乙醇中不同水体积分数的色坐标(x, y)
Table 2 Chromaticity color coordinates (x, y) of CDs with different water volume fractions in EtOH
S. N | Water volume fractions in EtOH/% | (x, y) |
---|---|---|
1 | 2 | (0.15, 0.12) |
2 | 10 | (0.18, 0.20) |
3 | 20 | (0.18, 0.22) |
4 | 30 | (0.20, 0.27) |
5 | 40 | (0.23, 0.37) |
6 | 50 | (0.23, 0.38) |
7 | 60 | (0.23, 0.38) |
8 | 70 | (0.26, 0.39) |
9 | 80 | (0.29, 0.41) |
10 | 90 | (0.33, 0.44) |
11 | 98 | (0.40, 0.50) |
图7 (A) N-CDs在水溶液中不同激发波长下的荧光光谱和(B) 3D荧光光谱
Fig.7 (A) Fluorescence spectra and (B) 3D fluorescence spectra of N-CDs in aqueous solution at different excitation wavelengths
Sample 1 (42° Shanxi Fen Wine) | Measured (φ/%) | Amount spiked (φ/%) | Amount measured (φ/%) | Recovery/% | RSD/% (n=6) |
---|---|---|---|---|---|
Fluorescence intensity method | 60.41 | 10 | 73.64 | 104.60 | 0.38 |
20 | 78.96 | 98.20 | 0.09 | ||
30 | 90.70 | 100.32 | 0.06 | ||
Emission peak method | 54.65 | 10 | 61.88 | 103.20 | 2.34 |
20 | 81.62 | 109.34 | 2.32 | ||
30 | 88.43 | 104.47 | 1.87 |
表3 山西汾酒中水体积分数的检测
Table 3 Determination of water volume fraction in Shanxi Fen Wine
Sample 1 (42° Shanxi Fen Wine) | Measured (φ/%) | Amount spiked (φ/%) | Amount measured (φ/%) | Recovery/% | RSD/% (n=6) |
---|---|---|---|---|---|
Fluorescence intensity method | 60.41 | 10 | 73.64 | 104.60 | 0.38 |
20 | 78.96 | 98.20 | 0.09 | ||
30 | 90.70 | 100.32 | 0.06 | ||
Emission peak method | 54.65 | 10 | 61.88 | 103.20 | 2.34 |
20 | 81.62 | 109.34 | 2.32 | ||
30 | 88.43 | 104.47 | 1.87 |
Sample 2 (75% medicinal alcohol) | Measured (φ/%) | Amount spiked (φ/%) | Amount measured (φ/%) | Recovery/% | RSD/% (n=6) |
---|---|---|---|---|---|
Fluorescence intensity method | 30.32 | 10 | 41.83 | 103.75 | 0.26 |
20 | 49.74 | 98.85 | 0.29 | ||
30 | 59.47 | 96.94 | 0.35 | ||
Emission peak method | 26.41 | 10 | 37.18 | 102.11 | 1.34 |
20 | 43.72 | 94.20 | 2.46 | ||
30 | 63.61 | 112.76 | 2.85 |
表4 医用酒精中水含量的检测
Table 4 Determination of water content in medicinal alcohol
Sample 2 (75% medicinal alcohol) | Measured (φ/%) | Amount spiked (φ/%) | Amount measured (φ/%) | Recovery/% | RSD/% (n=6) |
---|---|---|---|---|---|
Fluorescence intensity method | 30.32 | 10 | 41.83 | 103.75 | 0.26 |
20 | 49.74 | 98.85 | 0.29 | ||
30 | 59.47 | 96.94 | 0.35 | ||
Emission peak method | 26.41 | 10 | 37.18 | 102.11 | 1.34 |
20 | 43.72 | 94.20 | 2.46 | ||
30 | 63.61 | 112.76 | 2.85 |
图8 (A) N-CDs试纸被乙醇浸湿后,在紫外灯下的挥发干燥过程图片(λ=365 nm); (B)在乙醇,干燥和水存在下的图片; (C)循环恢复能力图片(λ=365 nm)
Fig. 8 (A) Picture of the evaporation and drying process of N-CDs test strips soaked in ethanol under ultraviolet light (λ=365 nm); (B) Pictures in the presence of ethanol, drying, and water; (C) Pictures of cyclic recovery capability (λ=365 nm)
图10 N-CDs的防伪应用: (A) N-CDs作为荧光墨水; (B) N-CDs作为书写纸; (C) N-CDs设计为剪纸; (D) N-CDs/PVA薄膜
Fig.10 Anti-counterfeiting application of N-CDs: (A) N-CDs as fluorescent ink; (B) N-CDs as writing paper; (C) N-CDs test paper is designed as paper-cuttings; (D) N-CDs/PVA film
1 | SENDAO R, YUSO M, ALGARRA M, et al. Comparative life cycle assessment of bottom-up synthesis routes for carbon dots derived from citric acid and urea[J]. J Cleaner Prod, 2020, 254: 120080. |
2 | KENNEDY J P, MAHER M R, CAMPBELL A Q. Citizens′ support for local law enforcement anti-counterfeiting activities[J]. Am J Crim Justice, 2019, 44(6): 914-937. |
3 | HU H, ZHONG H, CHEN C, et al. Magnetically responsive photonic watermarks on banknotes[J]. J Mater Chem C, 2014, 2(19): 3695. |
4 | SHARIEF S A, CHAHAL P, ALOCILJA E, et al. Application of DNA sequences in anti-counterfeiting: current progress and challenges[J]. Int J Pharm, 2021, 602: 120580. |
5 | ZHANG X, TAN X, HU Y, et al. Blue/yellow emissive carbon dots coupled with curcumin: a hybrid sensor toward fluorescence turn-on detection of fluoride ion[J]. J Hazard Mater, 2021, 411: 125184. |
6 | LIM J, LEE S, HA H, et al. Amine-tagged fragmented ligand installation for covalent modification of MOF-74[J]. Angew Chem Int Ed Engl, 2021, 60(17): 9296-9300. |
7 | SU C, ZOU C, JIAO L, et al. A MIMO radar signal processing algorithm for identifying chipless RFID tags[J]. Sensors, 2021, 21(24): 8314. |
8 | MAJUMDER S, RAY S, SADHUKHAN D, et al. ESOTP: ECC-based secure object tracking protocol for LoT communication[J]. Int J Commun Syst, 2021, 35(3): 5026. |
9 | FATIMA H, KHAN H U, AKBAR S, et al. Home automation and RFID-based internet of things security: challenges and issues[J]. Secur Commun Netw, 2021, 2021: 1-21. |
10 | SUN R, RAHMADYA B, KONG F, et al. Visual management of medical things with an advanced color-change RFID tag[J]. Sci Rep, 2021, 11(1): 22990. |
11 | EISENBARTH D, STOLL P, KLAHN C, et al. Unique coding for authentication and anti-counterfeiting by controlled and random process variation in L-PBF and L-DED[J]. Addit Manuf, 2020, 35: 10298. |
12 | LU X, CHEN C, WEN X, et al. Highly charged, magnetically sensitive magnetite/polystyrene colloids: synthesis and tunable optical properties[J]. J Mater Sci, 2019, 54(10): 7628-7636. |
13 | KOLCHANOV D S, SLABOV V, KELLER K, et al. Sol-gel magnetite inks for inkjet printing[J]. J Mater Chem C, 2019, 7(21): 6426-6432. |
14 | QIU Z, ZHU Y. Traceability anti-counterfeiting system based on the ownership of edge computing on the blockchain[J]. J Ambient Intell Human Comp, 2023, 14: 257-270. |
15 | YANG J, HE X, DAI J, et al. Photo-assisted enhancement performance for rapid detoxification of chemical warfare agent simulants over versatile ZnIn2S4/UiO-66-NH2 nanocomposite catalysts[J]. J Hazard Mater, 2021, 417: 126056. |
16 | CHEN C L, DENG Y Y, LI C T, et al. An IoT-based traceable drug anti-counterfeiting management system[J]. IEEE Access, 2020, 8: 224532-224548. |
17 | LIN C, ZHUANG Y, LI W, et al. Blue, green, and red full-color ultralong afterglow in nitrogen-doped carbon dots[J]. Nanoscale, 2019, 11(14): 6584-6590. |
18 | HONG B, DING X, LIA H, et al. Combination treatment of captopril and prazosin to treat patients with gestational hypertension[J]. Exp Ther Med, 2018, 16(4): 3694-3702. |
19 | 于盼, 王光辉, 郭建花, 等. 黄色荧光碳点用于盐酸金霉素的检测[J]. 应用化学, 2023, 40(7): 1017-1023. |
YU P, WANG G H, GUO J H, et al. Yellow fluorescent carbon dots for sensitive detection of chlortetracycline hydrochloride[J]. Chin J Appl Chem, 2023, 40(7): 1017-1023. | |
20 | 胡靖怡, 郑雅桐, 叶炜浩, 等. N-杂环芳基水溶性碳点全光谱紫外吸收剂的合成与应用[J]. 应用化学, 2023, 40(12): 1700-1711. |
HU J Y, ZHENG Y T, YE W H, et al, Preparation and application of N-heterocyclic aryl water-soluble carbon dots full-spectrum UV absorbers[J]. Chin J Appl Chem, 2023, 40(12): 1700-1711. | |
21 | 杨振华, 孙宣森, 张月霞, 等. 氮硫共掺杂碳点的制备及其对牛奶中土霉素的检测[J]. 应用化学, 2022, 39(9): 1382-1390. |
YANG Z H, SUN X S, ZHANG Y X, et al. Preparation of nitrogen sulfur co-doped carbon dots with nitrogen sulfur and the application for detection of oxytetracycline in milk[J]. Chin J Appl Chem, 2022, 39(9): 1382-1390. | |
22 | YANG H, LIU Y, GUO Z, et al. Hydrophobic carbon dots with blue dispersed emission and red aggregation-induced emission[J]. Nat Commun, 2019, 10(1): 1789. |
23 | ZHU L, SHEN D, WANG Q, et al. Green synthesis of tunable fluorescent carbon quantum dots from lignin and their application in anti-counterfeit printing[J]. ACS Appl Mater Interfaces, 2021, 13(47): 56465-56475. |
24 | SUN Z, YAN F, XU J, et al. Solvent-controlled synthesis strategy of multicolor emission carbon dots and its applications in sensing and light-emitting devices[J]. Nano Res, 2021, 15(1): 414-422. |
25 | QIN Y, BAI Y, HUANG P, et al. Dual-emission carbon dots for ratiometric fluorescent water sensing, relative humidity sensing, and anticounterfeiting applications[J]. ACS Appl Nano Mater, 2021, 4(10): 10674-10681. |
26 | SHAFI N, SIDDIQUI F A, SULTANA N, et al. Concurrent determination of diltiazem, lisinopril, captopril, and enalapril in dosage formulations and in human serum by liquid chromatographic technique[J]. J Liq Chromatogr Relat Technol, 2015, 38(15): 1466-1473. |
27 | MENG Y, CUI S, LEI P, et al. Design of polarity-dependence orange emission multifunctional carbon dots for water detection and anti-counterfeiting[J]. Mater Today Chem, 2023, 33: 101669. |
28 | JIA J, LU W, CUI S, et al. N, Cl-doped carbon dots for fluorescence and colorimetric dual-mode detection of water in tetrahydrofuran and development of apaper-based sensor[J]. Microchim Acta, 2021, 188(10): 324. |
[1] | 于盼, 王光辉, 郭建花, 郭峤志, 董川. 黄色荧光碳点用于盐酸金霉素的检测[J]. 应用化学, 2023, 40(7): 1017-1023. |
[2] | 胡靖怡, 郑雅桐, 叶炜浩, 刘应亮. N-杂环芳基水溶性碳点全光谱紫外吸收剂的合成与应用[J]. 应用化学, 2023, 40(12): 1700-1711. |
[3] | 王睿哲, 胡广齐, 叶炜浩, 胡超凡, 庄健乐, 雷炳富, 李唯, 刘应亮. 一种高紫外-短波蓝光屏蔽的油溶性碳点的水热制备及其应用[J]. 应用化学, 2023, 40(1): 59-68. |
[4] | 杨振华, 孙宣森, 张月霞, 曹宇娟, 张琪琦, 郭峤志, 范小鹏, 李忠平, 董川. 氮硫共掺杂碳点的制备及其对牛奶中土霉素的检测[J]. 应用化学, 2022, 39(9): 1382-1390. |
[5] | 齐海燕, 张琛琪, 李金龙, 李军. 氮硫掺杂碳点的制备及检测铜离子[J]. 应用化学, 2022, 39(6): 980-989. |
[6] | 宋金萍, 马琦, 梁晓敏, 尚建鹏, 董川. 高荧光量子产率钕、氮双掺杂碳点用于柳氮磺吡啶检测及Hela细胞成像[J]. 应用化学, 2022, 39(11): 1726-1734. |
[7] | 孟丹, 郑开元, 陈珊珊, 卓钊龙, 王丽丽. 硅、氮共掺杂碳点荧光粉的制备及发光性能[J]. 应用化学, 2022, 39(11): 1766-1773. |
[8] | 刘巧玲, 任博荣, 刘睿蓉, 李雨霞, 王桂香, 任紫薇, 董川. N-掺杂的荧光碳点比率识别Ag+的性能[J]. 应用化学, 2021, 38(11): 1512-1520. |
[9] | 王丹, 彭海炎, 周兴平, 解孝林. 全息高分子/液晶复合材料的研究进展[J]. 应用化学, 2021, 38(10): 1268-1298. |
[10] | 徐丽萍, 刘清士, 董芷辰, 郭兴家, 董微. 基于氮掺杂碳点的荧光增强简便、快速而准确地检测环丙沙星[J]. 应用化学, 2020, 37(7): 830-838. |
[11] | 孟雅婷, 焦媛, 张羱, 高艺芳, 路雯婧, 刘洋, 董川. 红色荧光碳点的制备及其对过硫酸根的检测[J]. 应用化学, 2020, 37(6): 719-725. |
[12] | 弓辉, 康玉, 张荣, 任国栋, 侯笑雨, 张敏, 李丽红, 刘文, 王浩江, 刁海鹏. 氮掺杂碳点的制备及其对阿莫西林高灵敏检测[J]. 应用化学, 2020, 37(2): 227-234. |
[13] | 黄小梅,邓祥. 新型荧光碳点的制备及其在Hg2+检测中的应用[J]. 应用化学, 2019, 36(5): 603-610. |
[14] | 郭颖,李午戊,刘洋. 碳点的性质及其在化学发光分析中的研究进展[J]. 应用化学, 2016, 33(6): 624-632. |
[15] | JATUPAIBOON Nirun, 张德蒙, 王贝贝, 谢红国, 马小军. 自组装水热合成碳点-中空氧化硅纳米粒复合材料[J]. 应用化学, 2016, 33(4): 391-396. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||