应用化学 ›› 2024, Vol. 41 ›› Issue (7): 925-936.DOI: 10.19894/j.issn.1000-0518.240061

• 综合评述 •    下一篇

近红外二区光驱动的光动力治疗在克服肿瘤乏氧环境中的研究进展

杨懿芊1,2,3, 严晓霞1(), 彭皓2,3(), 吴爱国2,3, 杨方2,3()   

  1. 1.上海大学化学系,上海 200444
    2.中国科学院宁波材料技术与工程研究所先进诊疗材料与技术实验室,中国科学院宁波材料技术与工程研究所,宁波 315201
    3.先进能源科学与技术广东省实验室,惠州 516000
  • 收稿日期:2024-02-29 接受日期:2024-04-19 出版日期:2024-07-01 发布日期:2024-08-03
  • 通讯作者: 严晓霞,彭皓,杨方
  • 基金资助:
    中国科学院青年创新促进会项目(2022301);宁波市3315创新个人项目(2018-05-G)

Advances of NIR--Triggered Photodynamic Therapy in Overcoming Tumor Hypoxia Environment

Yi-Qian YANG1,2,3, Xiao-Xia YAN1(), Hao PENG2,3(), Ai-Guo WU2,3, Fang YANG2,3()   

  1. 1.Department of Chemistry,Shanghai University,Shanghai 200444,China
    2.Laboratory of Advanced Theranostic Materials and Technology,Ningbo Institute of Materials Technology and Engineering,Chinese Academy of Sciences,Ningbo 315201,China
    3.Advanced Energy Science and Technology Guangdong Laboratory,Huizhou 516000,China
  • Received:2024-02-29 Accepted:2024-04-19 Published:2024-07-01 Online:2024-08-03
  • Contact: Xiao-Xia YAN,Hao PENG,Fang YANG
  • About author:yangf@nimte.ac.cn
    penghao@nimte.ac.cn
    xxyan@shu.edu.cn
  • Supported by:
    the Youth Innovation Promotion Association, Chinese Academy of Sciences(2022301);Ningbo 3315 Innovative Talent Project(2018-05-G)

摘要:

光动力疗法因其具有非侵入性、低毒性、高时空选择性和特异靶向性等独特优势而被广泛应用于肿瘤治疗。该疗法利用光敏剂、光和氧分子,通过光敏剂介导产生活性氧自由基导致氧化损伤选择性地引起靶细胞的凋亡和坏死。然而,传统光动力疗法仍存在一些缺点,如光的组织穿透性有限、分子氧依赖以及肿瘤对治疗的固有障碍,这在很大程度上限制了肿瘤治疗效果。近些年来,国内外科研团队积极开发各种新型光敏剂,并将其与近红外光激发相结合,使得光动力疗法能够更深入地作用于肿瘤组织。针对深层肿瘤组织乏氧环境,进一步采取改善、利用该肿瘤微环境的策略,克服深层肿瘤组织缺氧对光动力疗法的限制,有助于优化肿瘤抑制效果。本文在阐明光动力疗法工作机制的基础上,系统总结讨论了近5年来近红外二区激光激发的光动力疗法在克服肿瘤乏氧障碍的最新进展,包括增加肿瘤组织内部氧含量和通过耐受缺氧环境2种方式针对性开发新型光敏剂,并对其发展前景进行了展望。

关键词: 纳米材料, 光动力治疗, 肿瘤治疗, 近红外二区, 乏氧

Abstract:

Photodynamic therapy has been widely used in tumor treatment for decades because of its non-invasive nature, temporal and spatial selectivity, and lower side effects. It employs photosensitizers, light and oxygen molecules to selectively induce apoptosis and necrosis of target cells through photosensitizer-mediated generation of free radicals leading to oxidative damage. However, the drawbacks of conventional photosensitizers, limited tissue penetration of light, molecular oxygen dependence, and inherent tumor barriers against treatment have largely limited the efficacy of photodynamic therapy. Various novel photosensitizers under near-infrared light excitation have been developed in recent years to overcome these barriers and enable photodynamic therapy for deep tumors. Concerning the oxygen-deprived environment of deep tumor tissues, it is helpful to optimize the efficacy of tumor inhibition through strategies that improve, exploit the hypoxic tumor microenvironment. In this review, on the basis of elucidating the working mechanism of photodynamic therapy, we systematically summarize and discuss the recent advances in the strategy of the second near-infrared window-triggered photodynamic therapy in overcoming tumor hypoxia in the past five years, as well as the prospect of its development.

Key words: Nanomaterials, Photodynamic therapy, Tumor therapy, Second near-infrared window, Hypoxia

中图分类号: