应用化学 ›› 2023, Vol. 40 ›› Issue (7): 976-994.DOI: 10.19894/j.issn.1000-0518.230092
王超宇1, 赵璐1, 王科伟1, 白云峰1(), 冯锋1,2()
收稿日期:
2023-04-06
接受日期:
2023-06-24
出版日期:
2023-07-01
发布日期:
2023-07-19
通讯作者:
白云峰,冯锋
基金资助:
Chao-Yu WANG1, Lu ZHAO1, Ke-Wei WANG1, Yun-Feng BAI1(), Feng FENG1,2()
Received:
2023-04-06
Accepted:
2023-06-24
Published:
2023-07-01
Online:
2023-07-19
Contact:
Yun-Feng BAI,Feng FENG
About author:
feng-feng64@263.netSupported by:
摘要:
纳米医学要求制备具有多种响应功能或者靶向的药物(基因)递送载体,为此不断引入新的纳米材料。作为一类新兴的晶体多孔材料,共价有机框架(Covalent organic frameworks, COFs)具有高结晶度、孔径可调和表面结构易修饰等特点。COFs的框架结构完全由构建单元及反应类型决定,可以由框架化学原理进行设计以得到预期结构,结构表面暴露的活性端基使其可通过合成后修饰策略进行功能化,这些特点均扩大了COFs在纳米医学领域的适用性。本综述从不同反应类型的角度对COFs的制备策略进行简要讨论,并详细对COFs作为抗肿瘤剂和递送载体在肿瘤治疗中的应用进行整理分析,最后探讨了COFs在肿瘤治疗领域现有的问题并对其未来发展方向进行了展望。
中图分类号:
王超宇, 赵璐, 王科伟, 白云峰, 冯锋. 共价有机框架的构筑策略及其在肿瘤治疗中应用的研究进展[J]. 应用化学, 2023, 40(7): 976-994.
Chao-Yu WANG, Lu ZHAO, Ke-Wei WANG, Yun-Feng BAI, Feng FENG. Research Progress in Preparation Strategy of Covalent Organic Frameworks and Its Application in Tumor Therapy[J]. Chinese Journal of Applied Chemistry, 2023, 40(7): 976-994.
图3 (a) COF-1的合成示意图[24]; (b) CTF-1的合成示意图[33]; (c) COF-300的合成示意图[48]; (d) TpPa-1和TpPa-2的合成示意图[50]
Fig.3 Schematic representation of the synthesis of COF-1[24] (a); CTF-1[33] (b); COF-300[48] (c); TpPa-1 and TpPa-2[50] (d)
图8 (a) CONDs的合成及PDT作用机制示意图[82]; (b) Py-BPy+?-COF的合成及PTT作用机制示意图[87]; (c) PgP@Fe-COF NPs的增强SDT作用机制示意图[88]; (d) PEG-CCM@APTES-COF-1的合成及CT作用机制示意图[89]
Fig.8 (a) Schematic illustration for the construction of CONDs and main mechanism of PDT[82]; (b) Schematic illustration for the construction of Py-BPy+?-COF and main mechanism of PTT[87]; (c) Schematic illustration for PgP@Fe-COF NPs enhances the SDT mechanism of action[88]; (d) Schematic illustration for the construction of PEG-CCM@APTES-COF-1 and main mechanism of CT[89]
COFs | Linkage | Drug molecules | Drug loading rate | Drug release ability | Response | Cell line | Ref. |
---|---|---|---|---|---|---|---|
APTES-COF-1 | Boroxine | DOX | 9.7% | — | — | Hela | |
TpASH | β-Ketoenamine | 5-FU | 12% | 74% drug release after 72 h | pH | MDA-MB-231 | |
TAPB-DMTP-COF | Imine | DOX | 32.1% | 40% release within 2 h, complete release after 24 h | pH | L929 | |
F68@SS-COFs | Imine | DOX | 21% | 94% drug release after 24 h | GSH | HepG2 | |
Fe3O4@COF | Imine | DOX | 0.5 mg/mg | — | — | HeLa | |
COF-HQ | Imine | 5-FU | — | 61.6% drug release after 48 h | pH | B16F10 | |
TTI-COF | Imine | Quercetin | — | — | — | MDA-MB-231 | |
TA-COF | Imine | TPZ | 17.8% | — | Azo reductase | 4T1 | |
DT-COF | Imine | CBP | 31.32% | — | pH | — | |
PI-2-COF,PI-3-COF | Imide | IBU,5-FU,Captopril | 30% | 85% drug release for 5-FU | pH | MCF-7 | |
PI-COF-4 | Imide | IBU | 24% | 95% drug release | pH | — | |
PI-COF-5 | Imide | IBU | 20% | 95% drug release | pH | — | |
TTI-COF film | Imine | DOX | — | — | pH | — | |
TPA-TMB-COF | Imine | DOX | 35% | 85% drug release after 72 h | pH | A549 | |
HFPB-TAPA | Imine | IBU | 14.0% | 99% drug release after 5 d | pH | H9C2 | |
TAPB-DMTA-COF | Imine | CUR | 27.68% | 74.6% drug release after 100 h | pH | L929 | |
COFTTA-DHTA | Imine | PFD | — | 74% drug release after 72 h | pH | CT26 | |
TP-Por COF | Imine | CAD | EE%=67% | 48.2% drug release after 24 h | pH | 4T1 |
表1 COFs在药物递送中的应用
Table 1 Applications of COFs in drug deliver
COFs | Linkage | Drug molecules | Drug loading rate | Drug release ability | Response | Cell line | Ref. |
---|---|---|---|---|---|---|---|
APTES-COF-1 | Boroxine | DOX | 9.7% | — | — | Hela | |
TpASH | β-Ketoenamine | 5-FU | 12% | 74% drug release after 72 h | pH | MDA-MB-231 | |
TAPB-DMTP-COF | Imine | DOX | 32.1% | 40% release within 2 h, complete release after 24 h | pH | L929 | |
F68@SS-COFs | Imine | DOX | 21% | 94% drug release after 24 h | GSH | HepG2 | |
Fe3O4@COF | Imine | DOX | 0.5 mg/mg | — | — | HeLa | |
COF-HQ | Imine | 5-FU | — | 61.6% drug release after 48 h | pH | B16F10 | |
TTI-COF | Imine | Quercetin | — | — | — | MDA-MB-231 | |
TA-COF | Imine | TPZ | 17.8% | — | Azo reductase | 4T1 | |
DT-COF | Imine | CBP | 31.32% | — | pH | — | |
PI-2-COF,PI-3-COF | Imide | IBU,5-FU,Captopril | 30% | 85% drug release for 5-FU | pH | MCF-7 | |
PI-COF-4 | Imide | IBU | 24% | 95% drug release | pH | — | |
PI-COF-5 | Imide | IBU | 20% | 95% drug release | pH | — | |
TTI-COF film | Imine | DOX | — | — | pH | — | |
TPA-TMB-COF | Imine | DOX | 35% | 85% drug release after 72 h | pH | A549 | |
HFPB-TAPA | Imine | IBU | 14.0% | 99% drug release after 5 d | pH | H9C2 | |
TAPB-DMTA-COF | Imine | CUR | 27.68% | 74.6% drug release after 100 h | pH | L929 | |
COFTTA-DHTA | Imine | PFD | — | 74% drug release after 72 h | pH | CT26 | |
TP-Por COF | Imine | CAD | EE%=67% | 48.2% drug release after 24 h | pH | 4T1 |
图9 (a) PcS@COF-1的合成示意图及其增强的PDT作用机制[119]; (b) COF@IR783的合成示意图及其PTT作用机制[117]; (c) COF-TiO2的合成示意图及其SDT作用机制[122]
Fig.9 (a) Schematic illustration for the construction of PcS@COF-1 and main mechanism of enhanced PDT[119]?; (b) Schematic illustration for the construction of COF@IR783 and main mechanism of PTT[117]?; (c) Schematic illustration for the construction of COF-TiO2 and main mechanism of SDT[122]
图10 (a) VONc@COF-Por的合成及PDT/PTT联合治疗作用机制示意图[124]; (b) TA-COF-P@CT的合成及PDT/CT联合治疗作用机制示意图[107]; (c) GA@PCOF@PDA的合成及PTT/PDT/CT联合治疗作用机制示意图[128];(d) CuS@COFs-BSA-FA/DOX的合成及CT/PTT/CDT联合治疗作用机制示意图[129]
Fig.10 (a) Schematic illustration for the construction of VONc@COF-Por and main mechanism of PDT/PTT combination therapy[124]?; (b) Schematic illustration for the construction of TA-COF-P@CT and main mechanism of PDT/CT combination therapy[107]?; (c) Schematic illustration for the construction of GA@PCOF@PDA and main mechanism of PTT/PDT/CT combination therapy?[128]?; (d) Schematic illustration for the construction of CuS@COFs-BSA-FA/DOX and main mechanism of CT/PTT/CDT combination therapy[129]
1 | DAS S, HEASMAN P, BEN T, et al. Porous organic materials: strategic design and structure-function correlation[J]. Chem Rev, 2017, 117(3): 1515-1563. |
2 | DAVANKOV V A, TSYURUPA M P. Structure and properties of hypercrosslinked polystyrene—the first representative of a new class of polymer networks[J]. React Polym, 1990, 13(1): 27-42. |
3 | MCKEOWN N B, MAKHSEED S, BUDD P M. Phthalocyanine-based nanoporous network polymers[J]. Chem Commun, 2002(23): 2780-2781. |
4 | YAGHI O M, O'KEEFFE M, OCKWIG N W, et al. Reticular synthesis and the design of new materials[J]. Nature, 2003, 423(6941): 705-714. |
5 | YAGHI O M. The reticular chemist[J]. Nano Lett, 2020, 20(12): 8432-8434. |
6 | HALDER A, KARAK S, ADDICOAT M, et al. Ultrastable imine-based covalent organic frameworks for sulfuric acid recovery: an effect of interlayer hydrogen bonding[J]. Angew Chem Int Ed, 2018, 57(20): 5797-5802. |
7 | DIERCKS CHRISTIAN S, YAGHI OMAR M. The atom, the molecule, and the covalent organic framework[J]. Science, 2017, 355(6328): eaal1585. |
8 | XU H, TAO S S, JIANG D L. Proton conduction in crystalline and porous covalent organic frameworks[J]. Nat Mater, 2016, 15(7): 722-726. |
9 | ZHANG J, HAN X, WU X W, et al. Multivariate chiral covalent organic frameworks with controlled crystallinity and stability for asymmetric catalysis[J]. J Am Chem Soc, 2017, 139(24): 8277-8285. |
10 | YAGHI O M, LI G, LI H. Selective binding and removal of guests in a microporous metal-organic framework[J]. Nature, 1995, 378(6558): 703-706. |
11 | 冯海弟, 赵璐, 白云峰, 等. 纳米金属有机框架在肿瘤靶向治疗中的应用[J]. 化学进展, 2022, 34(8): 1863-1848. |
FENG H D, ZHAO L, BAI Y F, et al. The application of nanoscale metal-organic frameworks for tumor targeted therapy[J]. Prog Chem, 2022, 34(8): 1863-1848. | |
12 | HUANG N, CHEN X, KRISHNA R, et al. Two-dimensional covalent organic frameworks for carbon dioxide capture through channel-wall functionalization[J]. Angew Chem Int Ed, 2015, 54(10): 2986-2990. |
13 | HAN S S, MENDOZA-CORTÉS J L, GODDARD III W A. Recent advances on simulation and theory of hydrogen storage in metal-organic frameworks and covalent organic frameworks[J]. Chem Soc Rev, 2009, 38(5): 1460-1476. |
14 | ZHAN X J, CHEN Z, ZHANG Q C. Recent progress in two-dimensional COFs for energy-related applications[J]. J Mater Chem A, 2017, 5(28): 14463-14479. |
15 | 兰亚乾, 刘江, 商林杰. 共价有机框架材料用于光/电催化CO2还原的研究进展[J]. 应用化学, 2022, 39(4): 559-584. |
LAN Y Q, LIU J, SHANG L J. Covalent organic framework materials for photo/ electrocatalytic carbon dioxide reduction[J]. Chin J Appl Chem, 2022, 39(4): 559-584. | |
16 | 王禹婷, 杨天怡, 章应辉. 卟啉框架材料在光催化领域的应用[J]. 应用化学, 2020, 37(6): 611-619. |
WANG Y T, YANG T Y, ZHANG Y H. Application of porphyrin-based framework materials on photocatalysis[J]. Chin J Appl Chem, 2020, 37(6): 611-619. | |
17 | ZUO H Y, LI Y, LIAO Y Z. Europium ionic liquid grafted covalent organic framework with dual luminescence emissions as sensitive and selective acetone sensor[J]. ACS Appl Mater Interfaces, 2019, 11(42): 39201-39208. |
18 | LIN Y X, DENG Y, WANG M U, et al. DNA-functionalized covalent organic framework capsules for analysis of exosomes[J]. Talanta, 2023, 253: 124043. |
19 | YUAN L H, CHAI J, WANG S W, et al. Biomimetic laccase-Cu2O@MOF for synergetic degradation and colorimetric detection of phenolic compounds in wastewater[J]. Environ Technol Innovation, 2023, 30: 103085. |
20 | GUAN Q, ZHOU L L, LI W Y, et al. Covalent organic frameworks (COFs) for cancer therapeutics[J]. Chem-Eur J, 2020, 26(25): 5583-5591. |
21 | HAN Z Y, QIAN Y, GAO X Y, et al. Hypoxia-responsive covalent organic framework by single NIR laser-triggered for multimodal synergistic therapy of triple-negative breast cancer[J]. Colloids Surf B: Biointerfaces, 2023, 222: 113094. |
22 | LI W Y, WAN J J, KAN J L, et al. A biodegradable covalent organic framework for synergistic tumor therapy[J]. Chem Sci, 2023, 14(6): 1453-1460. |
23 | BAI Z Q, ZHAO L, FENG H D, et al. Fabricating aptamer-functionalized Ti3C2 therapeutic nanoplatform for targeted chemo-photothermal therapy of cancer[J]. Mater Design, 2023, 226: 111656. |
24 | CÔTÉ A P, BENIN A I, OCKWIG N W, et al. Porous, crystalline, covalent organic frameworks[J]. Science, 2005, 310(5751): 1166-1170. |
25 | GUAN Q, WANG G B, ZHOU L L, et al. Nanoscale covalent organic frameworks as theranostic platforms for oncotherapy: synthesis, functionalization, and applications[J]. Nanoscale Adv, 2020, 2(9): 3656-3733. |
26 | ESRAFILI A, WAGNER A, INAMDAR S, et al. Covalent organic frameworks for biomedical applications[J]. Adv Healthcare Mater, 2021, 10(6): 2002090. |
27 | KUMAR S, KULKARNI V V, JANGIR R. Covalent-organic framework composites: a review report on synthesis methods[J]. ChemistrySelect, 2021, 6(41): 11201-11223. |
28 | LIU R Y, TAN K T, GONG Y F, et al. Covalent organic frameworks: an ideal platform for designing ordered materials and advanced applications[J]. Chem Soc Rev, 2021, 50(1): 120-242. |
29 | BHUNIA S, DEO K A, GAHARWAR A K. 2D covalent organic frameworks for biomedical applications[J]. Adv Funct Mater, 2020, 30(27): 2002046. |
30 | XU H, GAO J, JIANG D L. Stable, crystalline, porous, covalent organic frameworks as a platform for chiral organocatalysts[J]. Nat Chem, 2015, 7(11): 905-912. |
31 | BISWAL B P, CHANDRA S, KANDAMBETH S, et al. Mechanochemical synthesis of chemically stable isoreticular covalent organic frameworks[J]. J Am Chem Soc, 2013, 135(14): 5328-5331. |
32 | CAMPBELL N L, CLOWES R, RITCHIE L K, et al. Rapid microwave synthesis and purification of porous covalent organic frameworks[J]. Chem Mater, 2009, 21(2): 204-206. |
33 | KUHN P, ANTONIETTI M, THOMAS A. Porous, covalent triazine-based frameworks prepared by ionothermal synthesis[J]. Angew Chem Int Ed, 2008, 47(18): 3450-3453. |
34 | LIU J J, ZAN W, LI K, et al. Solution synthesis of semiconducting two-dimensional polymer via trimerization of carbonitrile[J]. J Am Chem Soc, 2017, 139(34): 11666-11669. |
35 | MEDINA D D, ROTTER J M, HU Y, et al. Room temperature synthesis of covalent-organic framework films through vapor-assisted conversion[J]. J Am Chem Soc, 2015, 137(3): 1016-1019. |
36 | EVANS A M, PARENT L R, FLANDERS N C, et al. Seeded growth of single-crystal two-dimensional covalent organic frameworks[J]. Science, 2018, 361(6397): 52-57. |
37 | EL-KADERI H M, HUNT J R, MENDOZA-CORTÉS J L, et al. Designed synthesis of 3D covalent organic frameworks[J]. Science, 2007, 316(5822): 268-272. |
38 | WAN S, GUO J, KIM J, et al. A photoconductive covalent organic framework: self-condensed arene cubes composed of eclipsed 2D polypyrene sheets for photocurrent generation[J]. Angew Chem Int Ed, 2009, 48(30): 5439-5442. |
39 | SMITH B J, HWANG N, CHAVEZ A D, et al. Growth rates and water stability of 2D boronate ester covalent organic frameworks[J]. Chem Commun, 2015, 51(35): 7532-7535. |
40 | DU Y, MAO K, KAMAKOTI P, et al. Experimental and computational studies of pyridine-assisted post-synthesis modified air stable covalent-organic frameworks[J]. Chem Commun, 2012, 48(38): 4606-4608. |
41 | DU Y, CALABRO D, WOOLER B, et al. One step facile synthesis of amine-functionalized COF-1 with enhanced hydrostability[J]. Chem Mater, 2015, 27(5): 1445-1447. |
42 | DU Y, YANG H, WHITELEY J M, et al. Ionic covalent organic frameworks with spiroborate linkage[J]. Angew Chem Int Ed, 2016, 55(5): 1737-1741. |
43 | BOJDYS M J, JEROMENOK J, THOMAS A, et al. Rational extension of the family of layered, covalent, triazine-based frameworks with regular porosity[J]. Adv Mater, 2010, 22(19): 2202-2205. |
44 | YANG Z Z, CHEN H, WANG S, et al. Transformation strategy for highly crystalline covalent triazine frameworks: from staggered AB to eclipsed AA stacking[J]. J Am Chem Soc, 2020, 142(15): 6856-6860. |
45 | WANG K W, YANG L M, WANG X, et al. Covalent triazine frameworks via a low-temperature polycondensation approach[J]. Angew Chem Int Ed, 2017, 56(45): 14149-14153. |
46 | YANG N, GU Y I, SHAN Y L, et al. Dual rate-modulation approach for the preparation of crystalline covalent triazine frameworks displaying efficient sodium storage[J]. ACS Macro Lett, 2022, 11(1): 60-65. |
47 | LIU M Y, JIANG K, DING X, et al. Controlling monomer feeding rate to achieve highly crystalline covalent triazine frameworks[J]. Adv Mater, 2019, 31(19): 1807865. |
48 | URIBE-ROMO F J, HUNT J R, FURUKAWA H, et al. A crystalline imine-linked 3-D porous covalent organic framework[J]. J Am Chem Soc, 2009, 131(13): 4570-4571. |
49 | WAN S, GÁNDARA F, ASANO A, et al. Covalent organic frameworks with high charge carrier mobility[J]. Chem Mat, 2011, 23(18): 4094-4097. |
50 | KANDAMBETH S, MALLICK A, LUKOSE B, et al. Construction of crystalline 2D covalent organic frameworks with remarkable chemical (acid/base) stability via a combined reversible and irreversible route[J]. J Am Chem Soc, 2012, 134(48): 19524-19527. |
51 | SMITH B J, OVERHOLTS A C, HWANG N, et al. Insight into the crystallization of amorphous imine-linked polymer networks to 2D covalent organic frameworks[J]. Chem Commun, 2016, 52(18): 3690-3693. |
52 | HU J Y, ZANCA F, MCMANUS G J, et al. Catalyst-enabled in situ linkage reduction in imine covalent organic frameworks[J]. ACS Appl Mater Interfaces, 2021, 13(18): 21740-21747. |
53 | LI X L, ZHANG C L, CAI S L, et al. Facile transformation of imine covalent organic frameworks into ultrastable crystalline porous aromatic frameworks[J]. Nat Commun, 2018, 9(1): 2998. |
54 | FANG Q R, GU S, ZHENG J, et al. 3D Microporous base-functionalized covalent organic frameworks for size-selective catalysis[J]. Angew Chem Int Ed, 2014, 53(11): 2878-2882. |
55 | CUSIN L, PENG H, CIESIELSKI A, et al. Chemical conversion and locking of the imine linkage: enhancing the functionality of covalent organic frameworks[J]. Angew Chem Int Ed, 2021, 60(26): 14236-14250. |
56 | WALLER P J, ALFARAJ Y S, DIERCKS C S, et al. Conversion of imine to oxazole and thiazole linkages in covalent organic frameworks[J]. J Am Chem Soc, 2018, 140(29): 9099-9103. |
57 | WANG K W, JIA Z F, BAI Y, et al. Synthesis of Stable thiazole-linked covalent organic frameworks via a multicomponent reaction[J]. J Am Chem Soc, 2020, 142(25): 11131-11138. |
58 | REN X R, BAI B, ZHANG Q S, et al. Constructing stable chromenoquinoline-based covalent organic frameworks via intramolecular povarov reaction[J]. J Am Chem Soc, 2022, 144(6): 2488-2494. |
59 | URIBE-ROMO F J, DOONAN C J, FURUKAWA H, et al. Crystalline covalent organic frameworks with hydrazone linkages[J]. J Am Chem Soc, 2011, 133(30): 11478-11481. |
60 | DALAPATI S, JIN S, GAO J, et al. An azine-linked covalent organic framework[J]. J Am Chem Soc, 2013, 135(46): 17310-17313. |
61 | FANG Q R, ZHUANG Z B, GU S, et al. Designed synthesis of large-pore crystalline polyimide covalent organic frameworks[J]. Nat Commun, 2014, 5(1): 4503. |
62 | VYAS V S, HAASE F, STEGBAUER L, et al. A tunable azine covalent organic framework platform for visible light-induced hydrogen generation[J]. Nat Commun, 2015, 6(1): 8508. |
63 | WALLER P J, LYLE S J, OSBORN POPP T M, et al. Chemical conversion of linkages in covalent organic frameworks[J]. J Am Chem Soc, 2016, 138(48): 15519-15522. |
64 | STEWART D, ANTYPOV D, DYER M S, et al. Stable and ordered amide frameworks synthesised under reversible conditions which facilitate error checking[J]. Nat Commun, 2017, 8(1): 1102. |
65 | ZHUANG X D, ZHAO W X, ZHANG F, et al. A two-dimensional conjugated polymer framework with fully sp 2-bonded carbon skeleton[J]. Polym Chem, 2016, 7(25): 4176-4181. |
66 | JIN E, ASADA M, XU Q, et al. Two-dimensional sp 2 carbon-conjugated covalent organic frameworks[J]. Science, 2017, 357(6352): 673-676. |
67 | JIN E, LI J, GENG K, et al. Designed synthesis of stable light-emitting two-dimensional sp 2 carbon-conjugated covalent organic frameworks[J]. Nat Commun, 2018, 9(1): 4143. |
68 | LYU H, DIERCKS C S, ZHU C, et al. Porous crystalline olefin-linked covalent organic frameworks[J]. J Am Chem Soc, 2019, 141(17): 6848-6852. |
69 | BI S, YANG C, ZHANG W B, et al. Two-dimensional semiconducting covalent organic frameworks via condensation at arylmethyl carbon atoms[J]. Nat Commun, 2019, 10(1): 2467. |
70 | ZHANG B, WEI M F, MAO H Y, et al. Crystalline dioxin-linked covalent organic frameworks from irreversible reactions[J]. J Am Chem Soc, 2018, 140(40): 12715-12719. |
71 | GUAN X Y, LI H, MA Y C, et al. Chemically stable polyarylether-based covalent organic frameworks[J]. Nat Chem, 2019, 11(6): 587-594. |
72 | JACKSON K T, REICH T E, EL-KADERI H M. Targeted synthesis of a porous borazine-linked covalent organic framework[J]. Chem Commun, 2012, 48(70): 8823-8825. |
73 | LIU Y, ZHANG Y P, LI X M, et al. Fluorescence-enhanced covalent organic framework nanosystem for tumor imaging and photothermal therapy[J]. Nanoscale, 2019, 11(21): 10429-10438. |
74 | HE X L, JIANG Z Q, AKAKURU O U, et al. Nanoscale covalent organic frameworks: from controlled synthesis to cancer therapy[J]. Chem Commun, 2021, 57(93): 12417-12435. |
75 | LIN G Q, DING H M, YUAN D Q, et al. A pyrene-based, fluorescent three-dimensional covalent organic framework[J]. J Am Chem Soc, 2016, 138(10): 3302-3305. |
76 | LIN G Q, DING H M, CHEN R F, et al. 3D porphyrin-based covalent organic frameworks[J]. J Am Chem Soc, 2017, 139(25): 8705-8709. |
77 | CHEN L, FURUKAWA K, GAO J, et al. Photoelectric covalent organic frameworks: converting open lattices into ordered donor-acceptor heterojunctions[J]. J Am Chem Soc, 2014, 136(28): 9806-9809. |
78 | KELLER N, BESSINGER D, REUTER S, et al. Oligothiophene-bridged conjugated covalent organic frameworks[J]. J Am Chem Soc, 2017, 139(24): 8194-8199. |
79 | DOLMANS D E J G J, FUKUMURA D, JAIN R K. Photodynamic therapy for cancer[J]. Nat Rev Cancer, 2003, 3(5): 380-387. |
80 | 白志强, 赵璐, 白云峰, 等. MXenes的制备、性质及其在肿瘤诊疗中的研究进展[J]. 无机材料学报, 2022, 37(4):361-375. |
BAI Z Q, ZHAO L, BAI Y F, et al. Research progress on MXenes: preparation, property and application in tumor theranostics[J]. J Inorg Mater, 2022, 37(4): 361-375. | |
81 | CHENG L, WANG C, FENG L, et al. Functional nanomaterials for phototherapies of cancer[J]. Chem Rev, 2014, 114(21): 10869-10939. |
82 | ZHANG Y, ZHANG L, WANG Z Z, et al. Renal-clearable ultrasmall covalent organic framework nanodots as photodynamic agents for effective cancer therapy[J]. Biomaterials, 2019, 223: 119462. |
83 | SINGH N, KIM J, KIM J, et al. Covalent organic framework nanomedicines: biocompatibility for advanced nanocarriers and cancer theranostics applications[J]. Bioact Mater, 2023, 21: 358-380. |
84 | REN W X, KONG F, SHAO Y Q, et al. A covalent organic framework with a self-contained light source for photodynamic therapy[J]. Chem Commun, 2022, 58(34): 5245-5248. |
85 | ZHANG L, WANG S B, ZHOU Y, et al. Covalent organic frameworks as favorable constructs for photodynamic therapy[J]. Angew Chem Int Ed, 2019, 58(40): 14213-14218. |
86 | WAN X Y, ZHANG H W, PAN W, et al. An enzyme nanopocket based on covalent organic frameworks for long-term starvation therapy and enhanced photodynamic therapy of cancer[J]. Chem Commun, 2021, 57(44): 5402-5405. |
87 | MI Z, YANG P, WANG R, et al. Stable radical cation-containing covalent organic frameworks exhibiting remarkable structure-enhanced photothermal conversion[J]. J Am Chem Soc, 2019, 141(36): 14433-14442. |
88 | WANG D W, LIN L, LI T, et al. Etching bulk covalent organic frameworks into nanoparticles of uniform and controllable size by the molecular exchange etching method for sonodynamic and immune combination antitumor therapy[J]. Adv Mater, 2022, 34(45): 2205924. |
89 | ZHANG G Y, LI X L, LIAO Q B, et al. Water-dispersible PEG-curcumin/amine-functionalized covalent organic framework nanocomposites as smart carriers for in vivo drug delivery[J]. Nat Commun, 2018, 9: 2785. |
90 | ABBAS M, ZOU Q L, LI S K, et al. Self-assembled peptide- and protein-based nanomaterials for antitumor photodynamic and photothermal therapy[J]. Adv Mater, 2017, 29(12): 1605021. |
91 | JAQUE D, MARTíNEZ MAESTRO L, DEL ROSAL B, et al. Nanoparticles for photothermal therapies[J]. Nanoscale, 2014, 6(16): 9494-9530. |
92 | 王涛, 赵璐, 王科伟, 等. 共价有机框架的合成及其在肿瘤治疗中的应用研究进展[J]. 化学学报, 2021, 79(5): 600-613. |
WANG T, ZHAO L, WANG K W, et al. Research progress on the synthesis of covalent organic frameworks and their applications in tumor therapy[J]. Acta Chim Sin, 2021, 79(5): 600-613. | |
93 | GALLEGO N C, KLETT J W. Carbon foams for thermal management[J]. Carbon, 2003, 41(7): 1461-1466. |
94 | XIA R, ZHENG X H, LI C N, et al. Nanoscale covalent organic frameworks with donor-acceptor structure for enhanced photothermal ablation of tumors[J]. ACS Nano, 2021, 15(4): 7638-7648. |
95 | LIANG S, DENG X R, MA P A, et al. Recent advances in nanomaterial-assisted combinational sonodynamic cancer therapy[J]. Adv Mater, 2020, 32(47): 2003214. |
96 | LIU S N, ZHOU Y, HU C L, et al. Synthesis of porphyrin-incorporating covalent organic frameworks for sonodynamic therapy[J]. Chem Commun, 2021, 57(66): 8178-8181. |
97 | SUN T T, XIA R, ZHOU J L, et al. Protein-assisted synthesis of nanoscale covalent organic frameworks for phototherapy of cancer[J]. Mat Chem Front, 2020, 4(8): 2346-2356. |
98 | LIU S N, LIU Z D, MENG Q, et al. Facile synthesis of a cubic porphyrin-based covalent organic framework for combined breast cancer therapy[J]. ACS Appl Mater Interfaces, 2021, 13(48): 56873-56880. |
99 | MITRA S, SASMAL H S, KUNDU T, et al. Targeted drug delivery in covalent organic nanosheets (CONs) via sequential postsynthetic modification[J]. J Am Chem Soc, 2017, 139(12): 4513-4520. |
100 | SCICLUNA M C, VELLA-ZARB L. Evolution of nanocarrier drug-delivery systems and recent advancements in covalent organic framework-drug systems[J]. ACS Appl Nano Mater, 2020, 3(4): 3097-3115. |
101 | ZHOU J, YU G C, HUANG F H. Supramolecular chemotherapy based on host-guest molecular recognition: a novel strategy in the battle against cancer with a bright future[J]. Chem Soc Rev, 2017, 46(22): 7021-7053. |
102 | LIU S N, HU C L, LIU Y, et al. One-pot synthesis of DOX@covalent organic framework with enhanced chemotherapeutic efficacy[J]. Chem-Eur J, 2019, 25(17): 4315-4319. |
103 | LIU S, YANG J M, GUO R W, et al. Facile fabrication of redox-responsive covalent organic framework nanocarriers for efficiently loading and delivering doxorubicin[J]. Macromol Rapid Commun, 2020, 41(4): 1900570. |
104 | ZHAO K, GONG P W, HUANG J, et al. Fluorescence turn-off magnetic COF composite as a novel nanocarrier for drug loading and targeted delivery[J]. Microporous Mesoporous Mat, 2021, 311: 110713. |
105 | JIA Y T, ZHANG L N, HE B N, et al. 8-Hydroxyquinoline functionalized covalent organic framework as a pH sensitive carrier for drug delivery[J]. Mater Sci Eng C, 2020, 117: 111243. |
106 | VYAS V S, VISHWAKARMA M, MOUDRAKOVSKI I, et al. Exploiting noncovalent interactions in an imine-based covalent organic framework for quercetin delivery[J]. Adv Mater, 2016, 28(39): 8749-8754. |
107 | GE L, QIAO C Y, TANG Y K, et al. Light-activated hypoxia-sensitive covalent organic framework for tandem-responsive drug delivery[J]. Nano Lett, 2021, 21(7): 3218-3224. |
108 | AKYUZ L. An imine based COF as a smart carrier for targeted drug delivery: from synthesis to computational studies[J]. Microporous Mesoporous Mat, 2020, 294: 109850. |
109 | BAI L Y, PHUA S Z F, LIM W Q, et al. Nanoscale covalent organic frameworks as smart carriers for drug delivery[J]. Chem Commun, 2016, 52(22): 4128-4131. |
110 | ZHAO H Y, JIN Z, SU H M, et al. Targeted synthesis of a 2D ordered porous organic framework for drug release[J]. Chem Commun, 2011, 47(22): 6389-6391. |
111 | FANG Q R, WANG J H, GU S, et al. 3D porous crystalline polyimide covalent organic frameworks for drug delivery[J]. J Am Chem Soc, 2015, 137(26): 8352-8355. |
112 | YU J P, JIA X, YANG Y M, et al. Molecular dynamics study of a covalent organic framework as highly-efficient and biocompatible carriers for doxorubicin delivery: the role of nanopores[J]. J Phys D: Appl Phys, 2021, 55(10): 105402. |
113 | WANG B, LIU X C, GONG P W, et al. Fluorescent COFs with a highly conjugated structure for visual drug loading and responsive release[J]. Chem Commun, 2020, 56(4): 519-522. |
114 | LI L X, YUN Q B, ZHU C Z, et al. Isoreticular series of two-dimensional covalent organic frameworks with the kgd topology and controllable micropores[J]. J Am Chem Soc, 2022, 144(14): 6475-6482. |
115 | ZOU Y C, WANG P, ZHANG A P, et al. Covalent organic framework-incorporated nanofibrous membrane as an intelligent platform for wound dressing[J]. ACS Appl Mater Interfaces, 2022, 14(7): 8680-8692. |
116 | WANG S B, CHEN Z X, GAO F, et al. Remodeling extracellular matrix based on functional covalent organic framework to enhance tumor photodynamic therapy[J]. Biomaterials, 2020, 234: 119772. |
117 | WANG K, ZHANG Z, LIN L, et al. Cyanine-assisted exfoliation of covalent organic frameworks in nanocomposites for highly efficient chemo-photothermal tumor therapy[J]. ACS Appl Mater Interfaces, 2019, 11(43): 39503-39512. |
118 | GUAN Q, FU D D, LI Y A, et al. BODIPY-decorated nanoscale covalent organic frameworks for photodynamic therapy[J]. Iscience, 2019, 14: 180-198. |
119 | TONG X N, GAN S J, WU J H, et al. A nano-photosensitizer based on covalent organic framework nanosheets with high loading and therapeutic efficacy[J]. Nanoscale, 2020, 12(13): 7376-7382. |
120 | WANG W X, SONG Y T, CHEN J Y, et al. Polyoxometalate-covalent organic framework hybrid materials for pH-responsive photothermal tumor therapy[J]. J Mater Chem B, 2022, 10(7): 1128-1135. |
121 | TAN J, NAMUANGRUK S, KONG W F, et al. Manipulation of amorphous-to-crystalline transformation: towards the construction of covalent organic framework hybrid microspheres with NIR photothermal conversion ability[J]. Angew Chem Int Ed, 2016, 55(45): 13979-13984. |
122 | CAI L H, HU C L, LIU S N, et al. Covalent organic framework-titanium oxide nanocomposite for enhanced sonodynamic therapy[J]. Bioconjugate Chem, 2021, 32(4): 661-666. |
123 | ZHOU L L, GUAN Q, LI W Y, et al. A ferrocene-functionalized covalent organic framework for enhancing chemodynamic therapy via redox dyshomeostasis[J]. Small, 2021, 17(32): 2101368. |
124 | GUAN Q, ZHOU L L, LI Y A, et al. Nanoscale covalent organic framework for combinatorial antitumor photodynamic and photothermal therapy[J]. ACS Nano, 2019, 13(11): 13304-13316. |
125 | GAN S J, TONG X N, ZHANG Y, et al. Covalent organic framework-supported molecularly dispersed near-infrared dyes boost immunogenic phototherapy against tumors[J]. Adv Funct Mater, 2019, 29(46): 1902752. |
126 | DONG X J, LI W Y, GUAN Q, et al. A CuS- and BODIPY-loaded nanoscale covalent organic framework for synergetic photodynamic and photothermal therapy[J]. Chem Commun, 2022, 58(14): 2387-2390. |
127 | GAO P, WEI R Y, LIU X H, et al. Covalent organic framework-engineered polydopamine nanoplatform for multimodal imaging-guided tumor photothermal-chemotherapy[J]. Chem Commun, 2021, 57(46): 5646-5649. |
128 | FENG J, REN W X, KONG F, et al. Nanoscale covalent organic framework for the low-temperature treatment of tumor growth and lung metastasis[J]. Sci China Mater, 2022, 65(4): 1122-1133. |
129 | WANG S L, PANG Y, HU S Y, et al. Copper sulfide engineered covalent organic frameworks for pH-responsive chemo/photothermal/chemodynamic synergistic therapy against cancer[J]. Chem Eng J, 2023, 451: 138864. |
130 | LOU H, CHU L C, ZHOU W B, et al. A diselenium-bridged covalent organic framework with pH/GSH/photo-triple-responsiveness for highly controlled drug release toward joint chemo/photothermal/chemodynamic cancer therapy[J]. J Mat Chem B, 2022, 10(39): 7955-7966. |
[1] | 商林杰, 刘江, 兰亚乾. 共价有机框架材料用于光/电催化CO2还原的研究进展[J]. 应用化学, 2022, 39(4): 559-584. |
[2] | 张艺潆, 李翠艳, 赵杰, 余笑明, 方千荣. 卟啉-硫醚基共价有机框架材料用于氧还原反应电催化剂[J]. 应用化学, 2022, 39(4): 647-656. |
[3] | 杜慧, 姚晨阳, 彭皓, 姜波, 李顺祥, 姚俊烈, 郑方, 杨方, 吴爱国. 过渡金属掺杂磁性纳米粒子在生物医学领域中的研究进展[J]. 应用化学, 2022, 39(3): 391-406. |
[4] | 王禹婷,杨天怡,章应辉. 卟啉框架材料在光催化领域的应用[J]. 应用化学, 2020, 37(6): 611-619. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||