1 |
LUCAS R M, YAZAR S, YOUNG A R, et al. Human health in relation to exposure to solar ultraviolet radiation under changing stratospheric ozone and climate[J]. Photochem Photobiol Sci, 2019, 18(3): 641-680.
|
2 |
LI X X, XU J K. Blue-light-blocking CdS-PMMA nanocomposite films with tunable cut-off wavelength and narrow absorbing transitional band[J]. J Mater Sci: Mater Electron, 2021, 32(2): 2113-2126.
|
3 |
NARIMATSU T, OZAWA Y, MIYAKE S, et al. Biological effects of blocking blue and other visible light on the mouse retina[J]. Clin Exp Ophthalmol, 2014, 42(6): 555-563.
|
4 |
XU N, GAO S Y, XU C Y, et al. Carbon quantum dots derived from waste acorn cups and its application as an ultraviolet absorbent for polyvinyl alcohol film[J]. Appl Surf Sci, 2021, 556(2021): 149774-149789.
|
5 |
TORBATI T V, JAVANBAKHT V. Fabrication of TiO2/Zn2TiO4/Ag nanocomposite for synergic effects of UV radiation protection and antibacterial activity in sunscreen[J]. Colloids Surf B: Biointerfaces, 2020, 187: 110652.
|
6 |
YU B, AI K, LU L. Dual-protective nano-sunscreen enables high-efficient elimination of the self-derived hazards[J]. Appl Mater Today 2020, 18: 100493-100503.
|
7 |
HU G, LEI B, JIAO X, et al. Synthesis of modified carbon dots with performance of ultraviolet absorption used in sunscreen[J]. Opt Express, 2019, 27(5): 7629-7641.
|
8 |
BARMAN B K, HANDEGARD O S, HERNANDEZ-PINILLA D, et al. Transparent hard coatings with SiON-encapsulated N-doped carbon dots for complete UV blocking and white light emission[J]. ACS Appl Electron Mater, 2021, 3(9): 3761-3773.
|
9 |
RAO F, CHEN Y H, ZHAO X P, et al. Enhancement of bamboo surface photostability by application of clear coatings containing a combination of organic/inorganic UV absorbers[J]. Prog Org Coat, 2018, 124: 314-320.
|
10 |
MOTA M D, COSTA R Y S, GUEDES A A S, et al. Guava-fruit extract can improve the UV-protection efficiency of synthetic filters in sun cream formulations[J]. J Photochem Photobiol B, 2019, 201: 111639-111645.
|
11 |
UTHIRAKUMAR P, DEVENDIRAN M, KIM T H, et al. A convenient method for isolating carbon quantum dots in high yield as an alternative to the dialysis process and the fabrication of a full-band UV blocking polymer film[J]. New J Chem, 2018, 42(22): 18312-18317.
|
12 |
BARMAN B, NAGAO T, NANDA K. Dual roles of a transparent polymer film containing dispersed N-doped carbon dots: a high-efficiency blue light converter and UV screen[J]. Appl Surf Sci, 2020, 510: 145405-145415.
|
13 |
WANG H J, HOU W Y, YU T T, et al. Facile microwave synthesis of carbon dots powder with enhanced solid-state fluorescence and its applications in rapid fingerprints detection and white-light-emitting diodes[J]. Dyes Pigm,2019, 170: 107623-107631.
|
14 |
QU D, SUN Z. The formation mechanism and fluorophores of carbon dots synthesized via a bottom-up route[J]. Mater Chem Frontiers, 2020, 4(2): 400-20.
|
15 |
WANG Y, HU A. Carbon quantum dots: synthesis, properties and applications[J]. J Mater Chem C, 2014, 2(34): 6921-6939.
|
16 |
HESS S C, PERMATASARI F A, FUKAZAWA H, et al. Direct synthesis of carbon quantum dots in aqueous polymer solution: one-pot reaction and preparation of transparent UV-blocking films[J]. J Mater Chem A, 2017, 5(10): 5187-5194.
|
17 |
PARK S J, YANG H K, MOON B K. Ultraviolet to blue blocking and wavelength convertible films using carbon dots for interrupting eye damage caused by general lighting[J]. Nano Energy, 2019, 60: 87-94.
|
18 |
LI J, LI P, WANG D, et al. One-pot synthesis of aqueous soluble and organic soluble carbon dots and their multi-functional applications[J]. Talanta, 2019, 202: 375-383.
|
19 |
GOMES C C, PRETO S. Blue light: a blessing or a curse?[J]. Procedia Manuf, 2015, 3: 4472-4479.
|
20 |
YANG W, GAO Y, ZUO C, et al. Thermally-induced cellulose nanofibril films with near-complete ultraviolet-blocking and improved water resistance[J]. Carbohydr Polym, 2019, 223: 115050.
|
21 |
YANG H, LIU Y, GUO Z, et al. Hydrophobic carbon dots with blue dispersed emission and red aggregation-induced emission[J]. Nat Commun, 2019, 10(1): 1789-1800.
|
22 |
李科. 席夫碱的制备与结构表征[D]. 合肥: 安徽大学, 2014.
|
|
LI K. Preparation and structural characterization of schiff bases[D]. Hefei: Anhui University, 2014.
|
23 |
NANDI N, SARKAR P, SAHU K. N-doped carbon dots for visual recognition of 4-nitroaniline and use in fluorescent inks[J]. ACS Appl Nano Mater, 2021, 4(9): 9616-9624.
|
24 |
SU Q, YANG X. Promoting room temperature phosphorescence through electron transfer from carbon dots to promethazine[J]. ACS Appl Mater Interfaces, 2021, 13(34): 41238-41248.
|
25 |
WANG C, YANG H, CHEN F, et al. Nitrogen-doped carbon dots increased light conversion and electron supply to improve the corn photosystem and yield[J]. Environ Sci Technol, 2021, 55(18): 12317-12325.
|
26 |
GAO W, WANG W, DONG X, et al. Nitrogen-doped carbonized polymer dots: a potent scavenger and detector targeting alzheimer's beta-Amyloid plaques[J]. Small, 2020, 16(43): 2002804.
|
27 |
XU X, MO L, LI Y, et al. Construction of carbon dots with color-tunable aggregation-induced emission by nitrogen-induced intramolecular charge transfer[J]. Adv Mater, 2021, 33(49): e2104872.
|
28 |
FANG Y, DUAN Y C, GENG Y, et al. Theoretical study on the photocyclization reactivity mechanism in a diarylethene derivative with multicolour fluorescence modulation[J]. J Photochem Photobiol A, 2021, 406: 113024.
|
29 |
刘志广. 仪器分析[M]. 北京: 高等教育出版社, 2007: 260-261.
|
|
LIU Z G. Analysis of instruments[M]. Beijing: Higher Education Press, 2007: 260-261.
|