应用化学 ›› 2024, Vol. 41 ›› Issue (10): 1481-1490.DOI: 10.19894/j.issn.1000-0518.240131
杨赛男1, 李平1, 吕圆1, 罗海勇1, 张玲玲2, 戴斌1(), 汪啸2()
收稿日期:
2024-04-18
接受日期:
2024-08-20
出版日期:
2024-10-01
发布日期:
2024-10-29
通讯作者:
戴斌,汪啸
基金资助:
Sai-Nan YANG1, Ping LI1, Yuan LYU1, Hai-Yong LUO1, Ling-Ling ZHANG2, Bin DAI1(), Xiao WANG2()
Received:
2024-04-18
Accepted:
2024-08-20
Published:
2024-10-01
Online:
2024-10-29
Contact:
Bin DAI,Xiao WANG
About author:
wangxiao@ciac.ac.cnSupported by:
摘要:
利用7款手机对胆红素浓度进行检测,其特征吸光度与胆红素浓度的线性回归决定系数(R2 )均大于0.95,但不同手机之间差异大,其特征吸光度的最大平均偏差高达183%。 本文利用梯度色卡进行实时校正,并考察不同色卡的校准效果,结果显示与反应体系颜色接近的色卡校准效果最佳; 利用与胆红素反应体系颜色相近的紫色梯度色卡校正并优化校正方程,7款手机的特征吸光度最大平均偏差降至17.5%。 引入校正色卡后7款手机检测27.2、55.1和169.3 μmol/L样本时,最大相对标准偏差(RSD)分别为6.0%、3.9%和3.5%。 利用34台不同品牌手机进行了色卡校正的验证,结果显示,该校准方法成功实现了不同手机测试结果的实时校准。
中图分类号:
杨赛男, 李平, 吕圆, 罗海勇, 张玲玲, 戴斌, 汪啸. 不同智能手机图像比色法的台间差异[J]. 应用化学, 2024, 41(10): 1481-1490.
Sai-Nan YANG, Ping LI, Yuan LYU, Hai-Yong LUO, Ling-Ling ZHANG, Bin DAI, Xiao WANG. The Inter-station Difference of Image Colorimetry for Smart Phones[J]. Chinese Journal of Applied Chemistry, 2024, 41(10): 1481-1490.
iPhone 6s | iPhone 11 | iPhone 13 | iPhone 13 Pro | iQOO Z3 | vivo Y79 | Mi 12 | |
---|---|---|---|---|---|---|---|
Number of cameras | 2 | 3 | 4 | 4 | 4 | 2 | 4 |
Pixels (10 000) | 500 | 1 200 | 1 200 | 1 200 | 6 400 | 1 600 | 5 000 |
Slope value(K) | 169.38 | 263.23 | 264.23 | 243.76 | 300.54 | 277.88 | 460.36 |
Coefficient of determination(R2) | 0.985 8 | 0.992 2 | 0.980 7 | 0.993 4 | 0.994 5 | 0.974 1 | 0.995 2 |
表1 7款手机的参数及线性检测结果
Table 1 Parameters and linear detection results of seven mobile phones
iPhone 6s | iPhone 11 | iPhone 13 | iPhone 13 Pro | iQOO Z3 | vivo Y79 | Mi 12 | |
---|---|---|---|---|---|---|---|
Number of cameras | 2 | 3 | 4 | 4 | 4 | 2 | 4 |
Pixels (10 000) | 500 | 1 200 | 1 200 | 1 200 | 6 400 | 1 600 | 5 000 |
Slope value(K) | 169.38 | 263.23 | 264.23 | 243.76 | 300.54 | 277.88 | 460.36 |
Coefficient of determination(R2) | 0.985 8 | 0.992 2 | 0.980 7 | 0.993 4 | 0.994 5 | 0.974 1 | 0.995 2 |
图3 6款手机检测的特征吸光度与Mi 12特征吸光度偏差图
Fig.3 Deviation map of the characteristic absorbance detected by 6 mobile phones and the characteristic absorbance of Mi 12
图5 6款手机在6种校正条件下与Mi 12的线性关系图A. Calibration curve for iPhone 11; B. Calibration curve for iPhone 13; C. Calibration curve for iPhone 6S; D. Calibration curve for iPhone 13 PRO; E. Calibration curve for IQOO Z3; F. Calibration curve for vivo y79
Fig.5 The linear relationships between six mobile phones and the Mi 12 under various calibration conditions
图6 紫色梯度色卡校正下6款手机与Mi 12测试的特征吸光度偏差
Fig.6 The purple gradient color card corrects the characteristic absorbance deviations observed in the six mobile phones relative to the Mi 12 reference
图7 紫色梯度色卡校正(截距为0)6款手机测试与Mi 12测试的特征吸光度偏差
Fig.7 The purple gradient color card (intercept is 0) corrects the characteristic absorbance deviations observed in the six mobile phones relative to the Mi 12 reference
T1/% | T2/% | T3/% | |
---|---|---|---|
Mi 12 | 5.2 | 3.9 | 3.0 |
iPhone 6s | 2.8 | 3.6 | 3.5 |
iPhone 11 | 4.4 | 2.1 | 1.1 |
iPhone 13 | 3.5 | 1.5 | 1.3 |
iPhone 13Pro | 6.0 | 2.3 | 1.4 |
iQOO Z3 | 5.3 | 3.9 | 2.5 |
vivo Y79 | 2.9 | 3.9 | 2.5 |
表2 7款手机的测试精密度
Table 2 Test repeatability of 7 mobile phones
T1/% | T2/% | T3/% | |
---|---|---|---|
Mi 12 | 5.2 | 3.9 | 3.0 |
iPhone 6s | 2.8 | 3.6 | 3.5 |
iPhone 11 | 4.4 | 2.1 | 1.1 |
iPhone 13 | 3.5 | 1.5 | 1.3 |
iPhone 13Pro | 6.0 | 2.3 | 1.4 |
iQOO Z3 | 5.3 | 3.9 | 2.5 |
vivo Y79 | 2.9 | 3.9 | 2.5 |
图8 (A) 34台未校正的手机检测胆红素样本的台间差异结果; (B)34台实时校正的手机检测胆红素样本的台间差异结果;(C)校正前后34台手机检测6个胆红素样本的极差结果
Fig.8 (A) Inter-station variation observed in bilirubin samples detected by the 34 uncorrected mobile phones; (B) Inter-station differences in bilirubin samples detected by the 34 mobile phones calibrated in real-time; (C) Range of bilirubin test results before and after calibration across the 34 mobile phones
1 | ZAYED B A, ALI A N, ELGEBALY A A, et al. Smartphone-based point-of-care testing of the SARS-CoV-2: a systematic review[J]. Sci Afr, 2023, 21: e01757. |
2 | CHEN J, SONG N, ZHANG N, et al. Smartphone-controlled portable photoelectrochemical immunosensor for point-of-care testing of carcinoembryonic antigen[J]. Chem Eng J, 2023, 473: 145276. |
3 | XIAO M, TIAN F, LIU X, et al. Virus detection: from state-of-the-art laboratories to smartphone-based point-of-care testing[J]. Adv Sci, 2022, 9(17): 2105904. |
4 | KHALAF E M, JABBAR H S, ROMERO-PARRA R M, et al. Smartphone-assisted microfluidic sensor as an intelligent device for on-site determination of food contaminants: developments and applications[J]. Microchem J, 2023, 190: 108692. |
5 | ABDELBASSET W K, SAVINA S V, MAVALURU D, et al. Smartphone based aptasensors as intelligent biodevice for food contamination detection in food and soil samples: recent advances[J]. Talanta, 2023, 252: 123769. |
6 | UPADHYAY S, KUMAR A, SRIVASTAVA M, et al. Recent advancements of smartphone-based sensing technology for diagnosis, food safety analysis, and environmental monitoring[J]. Talanta, 2024, 275: 126080. |
7 | ZHU H, LIU M, LIU C, et al. Portable ratiometric fluorescence analytical device for copper ions based on smartphone in environment and living organisms[J]. Sci Total Environ, 2023, 857: 159488. |
8 | KI J, KWON I H, LEE J, et al. A portable smartphone-based colorimetric sensor that utilizes dual amplification for the on-site detection of airborne bacteria[J]. J Hazard Mater, 2023, 460: 132398. |
9 | LIN Y, LI Y, CHANG H, et al. Rapid testing of Δ 9-tetrahydrocannabinol and its metabolite on-site using a label-free ratiometric fluorescence assay on a smartphone[J]. Anal Chem, 2023, 95(18): 7363-7371. |
10 | YU K, LI M, CHAI H, et al. MOF-818 nanozyme-based colorimetric and electrochemical dual-mode smartphone sensing platform for in situ detection of H2O2 and H2S released from living cells[J]. Chem Eng J, 2023, 451: 138321. |
11 | TEEKAYUPAK K, AUMNATE C, LOMAE A, et al. Portable smartphone integrated 3D-Printed electrochemical sensor for nonenzymatic determination of creatinine in human urine[J]. Talanta, 2023, 254: 124131. |
12 | KAUR H, KUMARI N, SHARMA A, et al. Optical and electrochemical microfluidic sensors for water contaminants: a short review[J]. Mater Today: Proc, 2022, 48: 1673-1679. |
13 | DUAN W, CHENG J, GUO J. Smartphone-based photochemical sensor for multiplex determination of glucose, uric acid, and total cholesterol in fingertip blood[J]. Analyst, 2022, 147(14): 3285-3290. |
14 | DUAN S, CAI T, ZHU J, et al. Deep learning-assisted ultra-accurate smartphone testing of paper-based colorimetric ELISA assays[J]. Anal Chim Acta, 2023, 1248: 340868. |
15 | FRANCO M D O K, SUAREZ W T, PEREIRA G R P, et al. Using colorimetric spot test and digital imaging-based technique for volatile acidity determination in cachaça with the aid of a smartphone[J]. Microchem J, 2023, 187: 108416. |
16 | DELANEY J L, DOEVEN E H, HARSANT A J, et al. Use of a mobile phone for potentiostatic control with low cost paper-based microfluidic sensors[J]. Anal Chim Acta, 2013, 790: 56-60. |
17 | L PEZ M, MARTINEZ S, GOMEZ J, et al. Wireless monitoring of the pH, NH 4 + and temperature in a fish farm[J]. Procedia Chem, 2009, 1(1): 445-448. |
18 | LIN H, WANG Z, AHMAD W, et al. Identification of rice storage time based on colorimetric sensor array combined hyperspectral imaging technology[J]. J Stored Prod Res, 2020, 85: 101523. |
19 | YOO W S, KIM J G, KANG K, et al. Development of static and dynamic colorimetric analysis techniques using image sensors and novel image processing software for chemical, biological and medical applications[J]. Technologies, 2023, 11(1): 23. |
20 | FAN Y, LI J, GUO Y, et al. Digital image colorimetry on smartphone for chemical analysis: a review[J]. Measurement, 2021, 171: 108829. |
21 | SIRISATHITKUL C, SIRISATHITKUL Y. Smart scientific instruments based on smartphones: a brief review[J]. Int J Comput Electr Eng, 2023, 13(1): 651. |
22 | DI NONNO S, ULBER R. Smartphone-based optical analysis systems[J]. Analyst, 2021, 146(9): 2749-2768. |
23 | SONI A, SURANA R K, JHA S K. Smartphone based optical biosensor for the detection of urea in saliva[J]. Sens Actuators B: Chem, 2018, 269: 346-353. |
24 | 戴斌, 彭琳, 罗继全, 等. 基于智能手机定量测定蛋白质的方法研究[J]. 分析测试学报, 2018, 37(12): 1463-1468. |
DAI B,PENG L,LUO J Q, et al. Research on quantitative detection of protein using smart phone[J]. J Instrumental Anal, 2018, 37(12): 1463-1468. | |
25 | 向宪昕, 孙华悦, 柴会宁, 等. 基于智能手机的可视化生物传感器在即时检测中的研究进展[J]. 分析化学, 2024, 52(2): 145-156. |
XIANG X X, SUN H Y, CHAI H N, et al. Research advance on smartphone-based visual biosensor in point-of-care testing[J]. Chin J Anal Chem, 2024, 52(2): 145-156. | |
26 | GOH K S, HO Y K, CHIONG T. Development of chromatic aberration correction factor method and algorithm for low-cost imaging optics[J]. J Eng Sci Technol, 2023, 18(3): 1427-1437. |
27 | OCHOA N A. Lateral chromatic aberration: a tool for retrieving the fringes phase[J]. Appl Opt, 2022, 61(7): 1797-1805. |
28 | SUN C, SHRIVASTAVA A, SINGH S, et al. Revisiting unreasonable effectiveness of data in deep learning era[C]. Proc IEEE Int Conf Comput Vis, 2017. |
29 | 李修华, 卢显杰, 奚金阳, 等. 智能手机 RGB 图像检测植物叶片叶绿素含量的方法[J]. 农业工程学报, 2021, 37(22): 145-151. |
LI X H, LU X J, XI J Y,et al. Univeisal method to detect the chlorophyll content in plant leaves with RGB images captured by smart phones[J]. Transactions CSAE, 2021, 37(22): 145-151. | |
30 | 王尉荧, 王璐, 徐怀瑾, 等. 基于手机终端的舌诊色差校正函数模型研究[J]. 中华中医药杂志, 2021, 36(2): 1020-1024. |
WANG W Y, WANG L, XU H J, et al. Study on the functional model of color calibration of tongue diagnosis based on mobile phone terminal[J]. Chin J Tradit Chin Med Pharm, 2021, 36(2): 1020-1024. | |
31 | GUERRA RUIZ A R, CRESPO J, LÓPEZ MARTÍNEZ R M, et al. Measurement and clinical usefulness of bilirubin in liver disease[J]. Adv Lab Med, 2021, 2(3): 352-361. |
[1] | 张越, 梁蕊, 赵灿男, 李春梅. 氧化石墨烯-DNA纳米探针用于三磷酸腺苷的检测与药物递送[J]. 应用化学, 2024, 41(1): 118-127. |
[2] | 刘凌波, 李双, 吴康兵. 激光雕刻石墨烯阵列电极测定曲美他嗪[J]. 应用化学, 2024, 41(1): 147-155. |
[3] | 姚春莹, 朱晓艳, 刘艳玲. 三维葡萄糖电化学传感器与胶原水凝胶集成实时监测细胞代谢[J]. 应用化学, 2024, 41(1): 156-163. |
[4] | 卢剑天, 邹金辉, 赵博霖, 张玉微. 无机纳米酶在分析传感领域的应用研究进展[J]. 应用化学, 2024, 41(1): 60-86. |
[5] | 刘明言, 石秀顶, 李天国, 王静. 电化学分析方法检测重金属离子研究进展[J]. 应用化学, 2023, 40(4): 463-475. |
[6] | 冷泽山, 郭洪梅, 蔡函青, 张剑. 高效液相色谱-电雾式检测器法同时检测食品中8种人工甜味剂的应用[J]. 应用化学, 2023, 40(3): 436-440. |
[7] | 姜士鹏, 周禹希, 孟沛然, 谢炎轩, 宋祉怡, 赵洹影, 孙越. 基于无金属可见光诱导原子转移自由基聚合方法制备人血清白蛋白超微印迹传感器及其性能[J]. 应用化学, 2023, 40(2): 299-308. |
[8] | 陈淑敏, 吕子全, 邹旋, 桂水清, 卢雪梅. 新冠常态下功能性口罩研究进展[J]. 应用化学, 2023, 40(11): 1504-1517. |
[9] | 周叶红, 张旭艺, 芦冬涛, 徐会文, 刘洋, 董川. 基于氮化碳量子点/罗丹明B系统检测汞离子的比率荧光探针[J]. 应用化学, 2023, 40(11): 1550-1557. |
[10] | 王文栋, 李在均. 钌-石墨烯量子点人工酶合成及用于胡萝卜中辛硫磷的光度检测[J]. 应用化学, 2022, 39(8): 1285-1293. |
[11] | 唐连波, 付大友, 陈琦, 奉阳润, 熊桠林, 王竹青. 碳量子点增强气液相化学发光检测二氧化碳[J]. 应用化学, 2022, 39(8): 1294-1302. |
[12] | 徐凤州, 唐华英, 刘吴荟, 江怡凤, 李文凯, 陆献海. 水体中铜离子的现场可视化半定量快速检测[J]. 应用化学, 2022, 39(8): 1303-1311. |
[13] | 李东东, 秦丽, 唐录华, 高文惠. 碱性橙Ⅱ印迹传感器的制备及其应用[J]. 应用化学, 2022, 39(7): 1052-1064. |
[14] | 牛青芳, 艾欣, 王奕璇, 贺方玖, 罗彼, 梁文婷, 董川. 三维还原氧化石墨烯/β-环糊精复合物的合成及其电化学检测水中左氧氟沙星[J]. 应用化学, 2022, 39(7): 1129-1137. |
[15] | 张晓丽, 彭玉美, 王庆伟, 秦利霞, 刘肖霞, 康诗钊, 李向清. 纳米Ag/TiO2纳米管阵列基底构建及表面增强拉曼散射光谱检测与降解盐酸四环素[J]. 应用化学, 2022, 39(7): 1147-1156. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||