1 |
DONG J, LU G, TU Y, et al. Recent research progress of red-emitting/near-infrared fluorescent probes for biothiols[J]. New J Chem, 2022, 46(23): 10995-11020.
|
2 |
DAI J, MA C, ZHANG P, et al. Recent progress in the development of fluorescent probes for detection of biothiols[J]. Dyes Pigm, 2020, 177: 108321.
|
3 |
GAO J, TAO Y, WANG N, et al. BODIPY-based turn-on fluorescent probes for cysteine and homocysteine[J]. Spectrochim Acta, Part A, 2018, 203: 77-84.
|
4 |
CUI L, BAEK Y, LEE S, et al. An AIE and ESIPT based kinetically resolved fluorescent probe for biothiols[J]. J Mater Chem C, 2016, 4(14): 2909-2914.
|
5 |
ZHANG B, QIN S, WANG N, et al. Diketopyrrolopyrrole-based fluorescent probe for visualizing over-expressed carboxylesterase in fever via ratiometric imaging[J]. Talanta, 2024, 266: 124971.
|
6 |
CAI Y, JI X, ZHANG Y, et al. Near-infrared fluorophores with absolute aggregation-caused quenching and negligible fluorescence re-illumination for in vivo bioimaging of nanocarriers[J]. Aggregate, 2022, 4(2): e277.
|
7 |
XU S, GUO F, XU Z, et al. A hemicyanine-based fluorescent probe for ratiometric detection of ClO- and turn-on detection of viscosity and its imaging application in mitochondria of living cells and zebrafish[J]. Sens Actuators B: Chem, 2023, 383: 133510.
|
8 |
STAVENGA D G, LEERTOUWER H L, DUDEK B, et al. Coloration of flowers by flavonoids and consequences of pH dependent absorption[J]. Front Plant Sci, 2021, 11: 600124.
|
9 |
REIS J, GASPAR A, MIHAZES N, et al. Chromone as a privileged scaffold in drug discovery: recent advances[J]. J Med Chem, 2017, 60(19): 7941-7951.
|
10 |
LIU Y, YU D, DING S, et al. Rapid and ratiometric fluorescent detection of cysteine with high selectivity and sensitivity by a simple and readily available probe[J]. ACS Appl Mater Interfaces, 2014, 6: 17543-17550.
|
11 |
QIN T, HUANG Y, ZHU K, et al. A flavonoid-based fluorescent test strip for sensitive and selective detection of a gaseous nerve agent simulant[J]. Anal Chim Acta, 2019, 1076: 125-130.
|
12 |
LI X, MA H, QIAN J, et al. Ratiometric fluorescent probe based on ESIPT for the highly selective detection of cysteine in living cells[J]. Talanta, 2019, 194: 717-722.
|
13 |
鞠志宇, 舒鹏华, 谢智宇,等. 一种黄酮荧光探针对肼的识别及细胞成像[J]. 有机化学, 2019, 39(3): 697-702.
|
|
JU Z Y, SHU P H, XIE Z Y, et al. A flavone-based fluorescent probe for hydrazine and its bioimaging in live cells[J]. Chin J Org Chem, 2019, 39(3): 697-702.
|
14 |
RESZKA M, SERDIUK IE, KOZAKIEWICZ K, et al. Influence of a 4′-substituent on the efficiency of flavonol-based fluorescent indicators of glycosidase activity[J]. Org Biomol Chem, 2020, 18(38): 7635-7648.
|
15 |
XU Z, ZHAO X, ZHOU M, et al. Donor engineering on flavonoid-based probes to enhance the fluorescence brightness in water: design, characterization, photophysical properties, and application for cysteine detection[J]. Sens Actuators B: Chem, 2021, 345: 130367.
|
16 |
FAN L, TONG C, CAO Y, et al. Highly specific esterase activated AIE plus ESIPT probe for sensitive ratiometric detection of carbaryl[J]. Talanta, 2022, 246: 123517.
|
17 |
周思仪, 丁旭, 赵永梅, 等. 基于黄酮的长波长荧光探针用于检测体外和体内生物硫醇[J]. 有机化学, 2023, 43(1): 178-185.
|
|
ZHOU S Y, DING X, ZHAO Y M, et al. A flavone-based long-wavelength fluorescent probe to detect biothiols in vitro and in vivo[J]. Chin J Org Chem, 2023, 43(1): 178-185.
|
18 |
杨亚成, 赵永梅, 王清照, 等. 一种裸眼识别的反应型铜离子荧光探针[J].精细化工, 2018, 35(4): 569-573.
|
|
YANG Y C, ZHAO Y M, WANG Q Z, et al. A naked eye recognition of reaction-based fluorescent probe for Cu2+ detection[J]. Fine Chem, 2018, 35(4): 569-573.
|
19 |
于红丽, 周思仪, 洪琛, 等. 基于黄酮骨架的“关-开”型荧光探针用于检测活细胞内丁酰胆碱酯酶[J]. 应用化学, 2023, 40(4): 500-516.
|
|
YU H L, ZHOU S Y, HONG C, et al. A flavone-based “Off-On” fluorescence probe for detecting butyrylcholinesterase in living cell[J]. Chin J Appl Chem, 2023, 40(4): 500-516.
|
20 |
CASIRAGHI G, CASNATI G, DRADI E, et al. A general synthesis of 2'-hydroxychalcones from bromomagnesium phenoxides and cinnamic aldehydes[J]. Tetrahedron, 1979, 35(17): 2061-2065.
|
21 |
GUNDUZ S, GOREN A C, OZTURK T, et al. Facile syntheses of 3-hydroxyflavones[J]. Org Lett, 2012, 14(6): 1576-1579.
|
22 |
OHKATSU Y, SATOH T. Antioxidant and photo-antioxidant activities of chalcone derivatives[J]. J JPN Petrol Inst, 2008, 51(5): 298-308.
|
23 |
齐秀霖, 杨航, 陈炳阳, 等. 2′-羟基查尔酮的合成工艺研究[J]. 第二军医大学学报, 2010, 31(5): 572-573.
|
|
QI X L, YANG H, CHEN B Y, et al. Improvement of synthesis process of 2′-hydroxychalcones [J]. Acad J Second Mil Med Univ, 2010, 31(5): 572-573.
|
24 |
NAIK M M, TILVE S G, KAMAT V P. Pyrrolidine and iodine catalyzed domino Aldol-Michael-dehydrogenative synthesis of flavones[J]. Tetrahedron Lett, 2014, 55(22): 3340-3343.
|
25 |
LI X, MA H, QIAN J, et al. Ratiometric fluorescent probe based on ESIPT for the highly selective detection of cysteine in living cells[J]. Talanta, 2019, 194: 717-722.
|
26 |
陈佳鑫,田秦秦,何炜.有机小分子探针对过氧亚硝酸根离子的荧光检测响应机理的研究进展[J]. 分析化学, 2024, 52(2): 166-177.
|
|
CHEN J X, TIAN Q Q, HE W. Research progress of fluorescence detection response mechanism of organic small molecular probes to peroxynitrite anion [J]. Chin J Anal Chem, 2024, 52(2): 166-177.
|
27 |
REN H, DU Y, YANG X, et al. Development of ESIPT-based specific fluorescent probes for bioactive species based on the protection-deprotection of the hydroxyl[J]. Chin Chem Lett, 2024, in press. https://doi.org/10.1016/j.cclet.2024.109867.
|
28 |
LIU, B, WANG J, ZHANG G, et al. Flavone-based ESIPT ratiometric chemodosimeter for detection of cysteine in living cells[J]. ACS Appl Mater Interfaces, 2014, 6: 4402-4407.
|
29 |
ABD EL-MEGUID E A, NAGLAH A M, MOUSTAFA G O, et al. Novel benzothiazole-based dual VEGFR-2/EGFR inhibitors targeting breast and liver cancers: synthesis, cytotoxic activity, QSAR and molecular docking studies[J]. Bioorg Med Chem Lett, 2022, 58: 128529.
|