应用化学 ›› 2021, Vol. 38 ›› Issue (5): 524-545.DOI: 10.19894/j.issn.1000-0518.210174
赵越, 孟祥芹, 阎锡蕴*, 范克龙*
收稿日期:
2021-04-07
接受日期:
2021-04-12
出版日期:
2021-05-01
发布日期:
2021-07-01
通讯作者:
*E-mail:yanxy@ibp.ac.cn; fankelong@ibp.ac.cn
基金资助:
ZHAO Yue, MENG Xiang-Qin, YAN Xi-Yun*, FAN Ke-Long*
Received:
2021-04-07
Accepted:
2021-04-12
Published:
2021-05-01
Online:
2021-07-01
Supported by:
摘要: 纳米酶,是一类自身蕴含酶学特性的纳米材料。 自2007年被首次报道以来,已有近千种不同组成的纳米材料被发现具有类酶活性,它们表现出类似天然酶的酶促反应动力学和催化机理,并且可以作为天然酶的替代物进行应用。 纳米酶本身所具有的类酶活性及其多功能、经济、稳定和易于大批量生产的优势,使其在病原微生物的快速检测以及感染性疾病的预防和治疗中展现出良好的应用潜力。 因此,纳米酶被视为一种新型的生物安全材料。 本文对近年来纳米酶在检测和杀灭细菌、病毒等病原微生物中的应用进行综述,为应对重大生物安全威胁和防范生物安全危害时,开发基于纳米酶的诊断和抗病原微生物治疗策略提供依据。
中图分类号:
赵越, 孟祥芹, 阎锡蕴, 范克龙. 纳米酶:一种新型的生物安全材料[J]. 应用化学, 2021, 38(5): 524-545.
ZHAO Yue, MENG Xiang-Qin, YAN Xi-Yun, FAN Ke-Long. Nanozyme: A New Type of Biosafety Material[J]. Chinese Journal of Applied Chemistry, 2021, 38(5): 524-545.
[1] 唐东升, 崔建勋, 梁刚豪, 等. 发展生物安全材料学,筑牢中国国家安全城墙[J]. 应用化学, 2020, 37(9): 985-993. TANG D S, CUI J X, LIANG G H, et al. Developing biosafety materials science and building the national security wall of China[J]. Chinese J Appl Chem, 2020, 37(9): 985-993. [2] LIU P, HAN L, WANG F, et al. Sensitive colorimetric immunoassay of Vibrio parahaemolyticus based on specific nonapeptide probe screening from a phage display library conjugated with MnO2 nanosheets with peroxidase-like activity[J]. Nanoscale, 2018, 10(6): 2825-2833. [3] LIU L, LIU J, HUANG H, et al. A quantitative foam immunoassay for detection of Escherichia coli O157∶H7 based on bimetallic nanocatalyst-gold platinum[J]. Microchem J, 2019, 148: 702-707. [4] YAO S, ZHAO C, LIU Y, et al. Colorimetric immunoassay for the detection of Staphylococcus aureus by using magnetic carbon dots and sliver nanoclusters as o-phenylenediamine-oxidase mimetics[J]. Food Anal Method, 2020, 13(4): 833-838. [5] LEE J W, SON J, YOO K M, et al. Characterization of the antioxidant activity of gold@platinum nanoparticles[J]. RSC Adv, 2014, 4(38): 19824-19830. [6] CHEN Z, YIN J J, ZHOU Y T, et al. Dual enzyme-like activities of iron oxide nanoparticles and their implication for diminishing cytotoxicity[J]. ACS Nano, 2012. 6(5): 4001-4012. [7] MATTER M T, FURER L A, STARSICH F H L, et al. Engineering the bioactivity of flame-made ceria and ceria/bioglass hybrid nanoparticles[J]. ACS Appl Mater Interfaces, 2019, 11(3): 2830-2839. [8] QIN T, MA R N, YIN Y Y, et al. Catalytic inactivation of influenza virus by iron oxide nanozyme[J]. Theranostics, 2019, 9(23): 6920-6935. [9] LIU Y, LIN A, LIU J, et al. Enzyme-responsive mesoporous ruthenium for combined chemo-photothermal therapy of drug-resistant bacteria[J]. ACS Appl Mater Interfaces, 2019, 11(30): 26590-26606. [10] SAMETBAND M, SHUKLA S, MENINGHER T, et al. Effective multi-strain inhibition of influenza virus by anionic gold nanoparticles[J]. MedChemComm, 2011, 2(5): 421-423. [11] BHUSHAN B, GOPINATH P. Antioxidant nanozyme: a facile synthesis and evaluation of the reactive oxygen species scavenging potential of nanoceria encapsulated albumin nanoparticles[J]. J Mater Chem B, 2015, 3(24): 4843-4852. [12] LEHAR S M, PILLOW T, XU M, et al. Novel antibody-antibiotic conjugate eliminates intracellular S.aureus[J]. Nature, 2015, 527(7578): 323-328. [13] ZHANG D, ZHAO Y X, GAO Y J, et al. Anti-bacterial and in vivo tumor treatment by reactive oxygen species generated by magnetic nanoparticles[J]. J Mater Chem B, 2013, 1(38): 5100-5107. [14] WU S J, DUAN N, QIU Y T, et al. Colorimetric aptasensor for the detection of Salmonella enterica serovar typhimurium using ZnFe2O4-reduced graphene oxide nanostructures as an effective peroxidase mimetics[J]. Int J Food Microbiol, 2017, 261: 42-48. [15] WANG S Q, DENG W F, YANG L, et al. Copper-based metal organic framework nanoparticles with peroxidase-like activity for sensitive colorimetric detection of staphylococcus aureus[J]. ACS Appl Mater Interfaces, 2017, 9(29): 24440-24445. [16] ZHANG L, CHEN Y T, CHENG N, et al. Ultrasensitive detection of viable Enterobacter sakazakii by a continual cascade nanozyme biosensor[J]. Anal Chem, 2017, 89(19): 10194-10200. [17] MUMTAZ S, WANG S, HUSSAIN S Z, et al. Dopamine coated Fe3O4 nanoparticles as enzyme mimics for the sensitive detection of bacteria[J]. Chem Commun, 2017, 53(91): 12306-12308. [18] ZENG C X, LU N, WEN Y L, et al. Engineering nanozymes using DNA for catalytic regulation[J]. ACS Appl Mater Interfaces, 2019, 11(2): 1790-1799. [19] DEHGHANI Z, HOSSEINI M, MOHAMMADNEJAD J, et al. New colorimetric DNA sensor for detection of Campylobacter jejuni in milk sample based on peroxidase-like activity of gold/platinium nanocluster[J]. ChemistrySelect, 2019, 4(40): 11687-11692. [20] ZHANG L, QI Z N, ZOU Y, et al. Engineering DNA-nanozyme interfaces for rapid detection of dental bacteria[J]. ACS Appl Mater Interfaces, 2019, 11(34): 30640-30647. [21] World Health Organization (WHO). Food Safety[R]. WHO: Geneva, Switzerland 2020. [22] SU H, ZHAO H, QIAO F, et al. Colorimetric detection of Escherichia coli O157∶H7 using functionalized Au@Pt nanoparticles as peroxidase mimetics[J]. Analyst, 2013, 138(10): 3026-3031. [23] HAN J J, ZHANG L, HU L M, et al. Nanozyme-based lateral flow assay for the sensitive detection of Escherichia coli O157∶H7 in milk[J]. J Dairy Sci, 2018, 101(7): 5770-5779. [24] SHAN S, LIU D F, GUO Q, et al. Sensitive detection of Escherichia coli O157∶H7 based on cascade signal amplification in ELISA[J]. J Dairy Sci, 2016, 99(9): 7025-7032. [25] LUO K, HU L M, GUO Q, et al. Comparison of 4 label-based immunochromatographic assays for the detection of Escherichia coli O157∶H7 in milk[J]. J Dairy Sci, 2017, 100(7): 5176-5187 [26] COLE M B, JONES M V and HOLYOAK C. The effect of pH, salt concentration and temperature on the survival and growth of Listeria monocytogenes[J]. J Appl Bacteriol, 1990, 69(1): 63-72. [27] AUVOLAT A, BESSE N G. The challenge of enumerating Listeria monocytogenes in food[J]. Food Microbiol, 2016, 53(Pt B): 135-49. [28] LIU Y, WANG J, SONG X, et al. Colorimetric immunoassay for Listeria monocytogenes by using core gold nanoparticles, silver nanoclusters as oxidase mimetics, and aptamer-conjugated magnetic nanoparticles[J]. Microchim Acta, 2018, 185(8):. [29] SCALLAN E, HOEKSTRA R M, ANGULO F J, et al. Foodborne illness acquired in the united states-major pathogens[J]. Emerg Infect Dis, 2011, 17(1): 7-15. [30] GLISSON J R. Bacterial respiratory diseases of poultry[J]. Poult Sci, 1998, 77(8): 1139-1142. [31] CHATTOPADHYAY S, DEY S K, MAITI P K, et al. A novel tool for capture and detection of typhoid fever using Ag-labeled nanocomposites[J]. J Biol Inorg Chem, 2014, 19(8): 1377-1384. [32] DAS R, DHIMAN A, KAPIL A, et al. Aptamer-mediated colorimetric and electrochemical detection of Pseudomonas aeruginosa utilizing peroxidase-mimic activity of gold nanozyme [J]. Anal Bioanal Chem, 2019, 411(6): 1229-1238. [33] LIU B, LIU J. Accelerating peroxidase mimicking nanozymes using DNA[J]. Nanoscale, 2015, 7(33): 13831-13835. [34] PARK J Y, JEONG H Y, KIM M I, et al. Colorimetric detection system for Salmonella typhimurium based on peroxidase-like activity of magnetic nanoparticles with DNA aptamers[J]. J. Nanomater, 2015, 2015: 527126 [35] SELWITZ R H, ISMAIL A I, PITTS N B. Dental caries[J]. Lancet, 2007, 369(9555): 51-59. [36] TAKAHASHI N, NYVAD B. The role of bacteria in the caries process: ecological perspectives[J]. J Dent Res, 2011, 90(3): 294-303. [37] COURVALIN P. Predictable and unpredictable evolution of antibiotic resistance[J]. J Intern Med, 2008, 264(1): 4-16. [38] LEVY S B, MARSHALL B. Antibacterial resistance worldwide: causes, challenges and responses[J]. Nat Med, 2004, 10(12 Suppl): S122-9. [39] WILLYARD C. Drug-resistant bacteria ranked[J]. Nature, 2017, 543(7643): 15. [40] BROWNE K, CHAKRABORTY S, CHEN R X, et al. A new era of antibiotics: the clinical potential of antimicrobial peptides[J]. Int J Mol Sci, 2020, 21(19): 23. [41] BUFFET-BATAILLON S, TATTEVIN P, BONNAURE-MALLET M, et al. Emergence of resistance to antibacterial agents: the role of quaternary ammonium compounds-a critical review[J]. Int J Antimicrob Agents, 2012, 39(5): 381-389. [42] CHERNOUSOVA S, EPPLE M. Silver as antibacterial agent: ion, nanoparticle, and metal[J]. Angew Chemie Int Ed, 2013, 52(6): 1636-1653. [43] ZHOU G, SHI Q S, HUANG X M, et al. The three bacterial lines of defense against antimicrobial agents[J]. Int J Mol Sci, 2015, 16(9): 21711-21733. [44] GUPTA A, DAS R, TONGA G Y, et al. Charge-switchable nanozymes for bioorthogonal imaging of biofilm-associated infections[J]. ACS Nano, 2018, 12(1): 89-94. [45] ZHENG Y, LIU W, QIN Z, et al. Mercaptopyrimidine-conjugated gold nanoclusters as nanoantibiotics for combating multidrug-resistant superbugs[J]. Bioconjugate Chem, 2018, 29(9): 3094-3103. [46] WANG Z, DONG K, LIU Z, et al. Activation of biologically relevant levels of reactive oxygen species by Au/g-C3N4 hybrid nanozyme for bacteria killing and wound disinfection[J]. Biomaterials, 2017, 113: 145-157. [47] FANG F C. Antimicrobial actions of reactive oxygen species[J]. mBio, 2011. 2(5): 6. [48] MA W, ZHANG T, LI R, et al. Bienzymatic synergism of vanadium oxide nanodots to efficiently eradicate drug-resistant bacteria during wound healing in vivo[J]. J Colloid Interface Sci, 2020, 559: 313-323. [49] TAO Y, JU E, REN J, et al. Bifunctionalized mesoporous silica-supported gold nanoparticles: intrinsic oxidase and peroxidase catalytic activities for antibacterial applications[J]. Adv Mater, 2015, 27(6): 1097-1104. [50] GAO L, GIGLIO K M, NELSON J L, et al. Ferromagnetic nanoparticles with peroxidase-like activity enhance the cleavage of biological macromolecules for biofilm elimination[J]. Nanoscale, 2014. 6(5): 2588-2593. [51] LI C, SUN Y, LI X, et al. Bactericidal effects and accelerated wound healing using Tb4O7 nanoparticles with intrinsic oxidase-like activity[J]. J Nanobiotechnol, 2019. 17. [52] GU Y, HUANG Y, QIU Z, et al. Vitamin B-2 functionalized iron oxide nanozymes for mouth ulcer healing[J]. Sci China: Life Sci, 2020, 63(1): 68-79. [53] SHAN J, LI X, YANG K, et al. Efficient bacteria killing by Cu2WS4 nanocrystals with enzyme-like properties and bacteria-binding ability[J]. ACS Nano, 2019, 13(12): 13797-13808. [54] STANKIC S, SUMAN S, HAQUE F, et al. Pure and multi metal oxide nanoparticles: synthesis, antibacterial and cytotoxic properties[J]. J Nanobiotechnol, 2016, 14: 20. [55] XI J Q, WEI G, AN L F, et al. Copper/carbon hybrid nanozyme: tuning catalytic activity by the copper state for antibacterial therapy[J]. Nano Lett, 2019, 19(11): 7645-7654. [56] YU N, CAI T, SUN Y, et al. A novel antibacterial agent based on AgNPs and Fe3O4 loaded chitin microspheres with peroxidase-like activity for synergistic antibacterial activity and wound-healing[J]. Int J Pharm, 2018, 552(1/2): 277-287. [57] SHI S, WU S, SHEN Y, et al. Iron oxide nanozyme suppresses intracellular Salmonella Enteritidis growth and alleviates infection in vivo[J]. Theranostics, 2018, 8(22): 6149-6162. [58] SHEN Y, XIAO Y, ZHANG S, et al. Fe3O4 nanoparticles attenuated Salmonella infection in chicken liver through reactive oxygen and autophagy via PI3K/Akt/mTOR signaling[J]. Front Physiol, 2020, 10: 1580. [59] PANDIAN C J, PALANIVEL R, BALASUNDARAM U. Green synthesized nickel nanoparticles for targeted detection and killing of S. typhimurium[J]. J Photochem Photobiol B, 2017, 174: 58-69. [60] XI J, WEI G, WU Q, et al. Light-enhanced sponge-like carbon nanozyme used for synergetic antibacterial therapy[J]. Biomater Sci, 2019, 7(10): 4131-4141. [61] YIN W, YU J, LV F, et al. Functionalized nano-MoS2 with peroxidase catalytic and near-infrared photothermal activities for safe and synergetic wound antibacterial applications[J]. ACS Nano, 2016, 10(12): 11000-11011. [62] WANG X W, ZHONG X Y, BAI L X, et al. Ultrafine titanium monoxide (TiO1+x) nanorods for enhanced sonodynamic therapy[J]. J Am Chem Soc, 2020, 142(14): 6527-6537. [63] SUN D, PANG X, CHENG Y, et al. Ultrasound-switchable nanozyme augments sonodynamic therapy against multidrug-resistant bacterial infection[J]. ACS Nano, 2020, 14(2): 2063-2076. [64] FLEMMING H C, WINGENDER J. The biofilm matrix[J]. Nat Rev Microbiol, 2010, 8(9): 623-633. [65] LEBEAUX D, GHIGO J M, BELOIN C. Biofilm-related infections: bridging the gap between clinical management and fundamental aspects of recalcitrance toward antibiotics[J]. Microbiol Mol Biol Rev, 2014, 78(3): 510-543. [66] DAVIES D. Understanding biofilm resistance to antibacterial agents[J]. Nat Rev Drug Discovery, 2003, 2(2): 114-122. [67] GAO L, LIU Y, KIM D, et al. Nanocatalysts promote Streptococcus mutans biofilm matrix degradation and enhance bacterial killing to suppress dental caries in vivo[J]. Biomaterials, 2016, 101: 272-284. [68] TOUMEY C. Quick lessons on environmental nanotech [J]. Nat Nanotechnol, 2015, 10(7): 566-567. [69] HWANG G, PAULA A J, HUNTER E E, et al. Catalytic antimicrobial robots for biofilm eradication[J]. Sci Robot, 2019, 4(29): eaaw2388. [70] HSU C L, LI Y J, JIAN H J, et al. Green synthesis of catalytic gold/bismuth oxyiodide nanocomposites with oxygen vacancies for treatment of bacterial infections[J]. Nanoscale, 2018, 10(25): 11808-11819. [71] WU R, CHONG Y, FANG G, et al. Synthesis of Pt hollow nanodendrites with enhanced peroxidase-like activity against bacterial infections: implication for wound healing[J]. Adv Funct Mater, 2018, 28(28): 1801484. [72] SUN H, GAO N, DONG K, et al. Graphene quantum dots-band-aids used for wound disinfection[J]. ACS Nano, 2014, 8(6): 6202-6210. [73] QIU H, PU F, LIU Z, et al. Hydrogel-based artificial enzyme for combating bacteria and accelerating wound healing[J]. Nano Res, 2020, 13(2): 496-502. [74] NATALIO F, ANDRE R, HARTOG A F, et al. Vanadium pentoxide nanoparticles mimic vanadium haloperoxidases and thwart biofilm formation[J]. Nat Nanotechnol, 2012, 7(8): 530-535. [75] HERGET K, HUBACH P, PUSCH S, et al. Haloperoxidase mimicry by CeO2-x nanorods combats biofouling[J]. Adv Mater, 2017, 29(4): 1603823. [76] LIU Y, NAHA P C, HWANG G, et al. Topical ferumoxytol nanoparticles disrupt biofilms and prevent tooth decay in vivo via intrinsic catalytic activity[J]. Nat Commun, 2018, 9(1): 2920. [77] UMAPATHI A, NAGARAJU N P, MADHYASTHA H, et al. Highly efficient and selective antimicrobial isonicotinylhydrazide-coated polyoxometalate-functionalized silver nanoparticles[J]. Colloids Surf B, 2019, 184: 110522. [78] NIU J S, SUN Y H, WANG F M, et al. Photomodulated nanozyme used for a gram-selective antimicrobial[J]. Chem Mat, 2018, 30(20): 7027-7033. [79] SANG Y, LI W, LIU H, et al. Construction of nanozyme-hydrogel for enhanced capture and elimination of bacteria[J]. Adv Funct Mater, 2019, 29(22): 1900518. [80] HUO M, WANG L, ZHANG H, et al. Construction of single-iron-atom nanocatalysts for highly efficient catalytic antibiotics[J]. Small, 2019, 15(31): 1901834. [81] XI J, ZHANG J, QIAN X, et al. Using a visible light-triggered pH switch to activate nanozymes for antibacterial treatment[J]. RSC Adv, 2020, 10(2): 909-913. [82] LIU X, YAN Z, ZHANG Y, et al. Two-dimensional metal-organic framework/enzyme hybrid nanocatalyst as a benign and self-activated cascade reagent for in vivo wound healing[J]. ACS Nano, 2019, 13(5): 5222-5230. [83] HUANG X W, WEI J J, LIU T, et al. Silk fibroin-assisted exfoliation and functionalization of transition metal dichalcogenide nanosheets for antibacterial wound dressings[J]. Nanoscale, 2017, 9(44): 17193-17198. [84] XU B, WANG H, WANG W, et al. A single-atom nanozyme for wound disinfection applications[J]. Angew Chem Int Ed, 2019, 58(15): 4911-4916. [85] CHEN S, QUAN Y, YU Y L, et al. Graphene quantum dot/silver nanoparticle hybrids with oxidase activities for antibacterial application[J]. ACS Biomater Sci Eng, 2017, 3(3): 313-321. [86] XU Z, QIU Z, LIU Q, et al. Converting organosulfur compounds to inorganic polysulfides against resistant bacterial infections[J]. Nat Commun, 2018, 9: 3713. [87] HELLMUTH J, MUCCINI C, COLBY D J, et al. Central nervous system safety during brief analytic treatment interruption of antiretroviral therapy within 4 human immunodeficiency virus remission trials: an observational study in acutely treated people living with human immunodeficiency virus[J]. Clin Infect Dis, 2020: ciaa1344. [88] YANG N, HUANG Y X, DING G S, et al. In situ generation of Prussian blue with potassium ferrocyanide to improve the sensitivity of chemiluminescence immunoassay using magnetic nanoparticles as label[J]. Anal Chem, 2019. 91(7): 4906-4912. [89] LONG L, LIU J B, LU K S, et al. Highly sensitive and robust peroxidase-like activity of Au-Pt core/shell nanorod-antigen conjugates for measles virus diagnosis[J]. J Nanobiotechnol, 2018, 16(1): 46. [90] LI A Y, LONG L, LIU F S, et al. Antigen-labeled mesoporous silica-coated Au-core Pt-shell nanostructure: a novel nanoprobe for highly efficient virus diagnosis[J]. J Biol Eng, 2019, 13(1): 87. [91] AHMED S R, KIM J, SUZUKI T, et al. Detection of influenza virus using peroxidase-mimic of gold nanoparticles[J]. Biotechnol Bioeng, 2016, 113(10): 2298-2303. [92] WEERATHUNGE P, RAMANATHAN R, TOROK V A, et al. Ultrasensitive colorimetric detection of murine norovirus using nanozyme aptasensor[J]. Anal Chem, 2019, 91(5): 3270-3276. [93] GAO Z Q, LI Y Y, ZHANG X B, et al. Ultrasensitive electrochemical immunosensor for quantitative detection of HBeAg using Au@Pd/MoS2@MWCNTs nanocomposite as enzyme-mimetic labels[J]. Biosens Bioelectron, 2018, 102: 189-195. [94] SHAO K, ZHANG C J, YE S Y, et al. Near-infrared electrochemiluminesence biosensor for high sensitive detection of porcine reproductive and respiratory syndrome virus based on cyclodextrin-grafted porous Au/PtAu nanotube[J]. Sens Actuator B-Chem, 2017, 240: 586-594. [95] ZHAN L, LI C M, WU W B, et al. A colorimetric immunoassay for respiratory syncytial virus detection based on gold nanoparticles-graphene oxide hybrids with mercury-enhanced peroxidase-like activity[J]. Chem Commun, 2014, 50(78): 11526-11528. [96] OH S, KIM J, TRAN V T, et al. Magnetic nanozyme-linked immunosorbent assay for ultrasensitive influenza a virus detection[J]. ACS Appl Mater Interfaces, 2018, 10(15): 12534-12543. [97] LIU D, JU C, HAN C, et al. Nanozyme chemiluminescence paper test for rapid and sensitive detection of SARS-CoV-2 antigen[J]. Biosens Bioelectron, 2021, 173: 112817. [98] AHMED S R, KIM J, SUZUKI T, et al. Enhanced catalytic activity of gold nanoparticle-carbon nanotube hybrids for influenza virus detection[J]. Biosens Bioelectron, 2016, 85: 503-508. [99] AHMED S R, CORREDOR J C, NAGY E, et al. Amplified visual immunosensor integrated with nanozyme for ultrasensitive detection of avian influenza virus[J]. Nanotheranostics, 2017, 1(3): 338-345. [100] ZHANG T, TIAN F, LONG L, et al. Diagnosis of rubella virus using antigen-conjugated Au@Pt nanorods as nanozyme probe[J]. Int J Nanomed, 2018, 13: 4795-4805. [101] WANG Y Z, ZHU G X, QI W J, et al. A versatile quantitation platform based on platinum nanoparticles incorporated volumetric bar-chart chip for highly sensitive assays[J]. Biosens Bioelectron, 2016, 85: 777-784. [102] DUAN D M, FAN K L, ZHANG D X, et al. Nanozyme-strip for rapid local diagnosis of Ebola[J]. Biosens Bioelectron, 2015, 74: 134-141. [103] ELECHIGUERRA J L, BURT J L, MORONES J R, et al. Interaction of silver nanoparticles with HIV-1[J]. J Nanobiotechnol, 2005, 3: 6-6. [104] MARTINEZ-AVILA O, HIJAZI K, MARRADI M, et al. Gold Manno-glyconanoparticies: multivalent systems to block HIV-1 gp120 binding to the lectin DC-SIGN[J]. Chem-Eur J, 2009, 15(38): 9874-9888. [105] RYOO S R, JANG H, KIM K S, et al. Functional delivery of DNAzyme with iron oxide nanoparticles for hepatitis C virus gene knockdown[J]. Biomaterials, 2012, 33(9): 2754-2761. [106] LEVINA A S, REPKOVA M N, ISMAGILOV Z R, et al. Efficient inhibition of human influenza A virus by oligonucleotides electrostatically fixed on polylysine-containing TiO2 nanoparticles[J]. Russ J Bioorg Chem, 2014, 40(2): 179-184. [107] EE M Y, YANG J A, JUNG H S, et al. Hyaluronic acid-gold nanoparticle/interferon alpha complex for targeted treatment of hepatitis C virus infection[J]. ACS Nano, 2012, 6(11): 9522-9531. [108] JANG H, MIN D H. Spherically-clustered porous Au-Ag alloy nanoparticle prepared by partial inhibition of galvanic replacement and its application for efficient multimodal therapy[J]. ACS Nano, 2015, 9(3): 2696-2703. [109] XIANG D X, ZHENG Y, DUAN W, et al. Inhibition of A/Human/Hubei/3/2005 (H3N2) influenza virus infection by silver nanoparticles in vitro and in vivo[J]. Int J Nanomed, 2013, 8: 4103-4113. [110] ALLAWADHI P, KHURANA A, ALLWADHI S, et al. Nanoceria as a possible agent for the management of COVID-19[J]. Nano Today, 2020, 35: 100982. [111] NGUYEN Q H, KIM M I. Nanomaterial-mediated paper-based biosensors for colorimetric pathogen detection[J]. TrAC Trends Anal Chem, 2020, 132: 116038. [112] LARA H H, AYALA-NUNEZ N V, IXTEPAN-TURRENT L, et al. Mode of antiviral action of silver nanoparticles against HIV-1[J]. J Nanobiotechnol, 2010, 8: 1. [113] FAYAZ A M, AO Z, GIRILAL M, et al. Inactivation of microbial infectiousness by silver nanoparticles-coated condom: a new approach to inhibit HIV- and HSV-transmitted infection[J]. Int J Nanomed, 2012, 7: 5007-5018. [114] CHEN H W, HUANG C Y, LIN S Y, et al. Synthetic virus-like particles prepared via protein corona formation enable effective vaccination in an avian model of coronavirus infection[J]. Biomaterials, 2016, 106: 111-118. [115] TAO W, ZIEMER K S, GILL H S. Gold nanoparticle-M2e conjugate coformulated with CpG induces protective immunity against influenza A virus[J]. Nanomedicine, 2014, 9(2): 237-252. [116] XIAO Y, SHI M, QIU Q, et al. Piperlongumine suppresses dendritic cell maturation by reducing production of reactive oxygen species and has therapeutic potential for rheumatoid arthritis[J]. J Immunol, 2016, 196(12): 4925-4934. [117] QIN T, MA S, MIAO X Y, et al. Mucosal vaccination for influenza protection enhanced by catalytic immune-adjuvant[J]. Adv Sci, 2020, 7(18): 2000771. [118] SAPTARSHI S R, DUSCHL A, LOPATA A L. Interaction of nanoparticles with proteins: relation to bio-reactivity of the nanoparticle[J]. J Nanobiotechnol, 2013, 11: 26. [119] KUSUMOPUTRO S, TSENG S, TSE J, et al. Potential nanoparticle applications for prevention, diagnosis, and treatment of COVID-19[J]. View, 2020, 1(4): 20200105. [120] JUNG R, KIM Y, KIM H S, et al. Antimicrobial properties of hydrated cellulose membranes with silver nanoparticles[J]. J Biomater Sci, Polym Ed, 2009, 20(3): 311-324. [121] WANG Z, XIA T, LIU S. Mechanisms of nanosilver-induced toxicological effects: more attention should be paid to its sublethal effects[J]. Nanoscale, 2015, 7(17): 7470-7481. [122] CAI T T, FANG G, TIAN X, et al. Optimization of antibacterial efficacy of noble-metal-based core-shell nanostructures and effect of natural organic matter [J]. ACS Nano, 2019, 13(11): 12694-12702. [123] MAHARJAN A, DIKSHIT P K, GUPTA A, et al. Catalytic activity of magnetic iron oxide nanoparticles for hydrogen peroxide decomposition: optimization and characterization[J]. J Chem Technol Biotechnol, 2020, 95(9): 2495-2508. [124] HUANG L, CHEN J X, GAN L F, et al. Single-atom nanozymes[J]. Sci Adv, 2019. 5(5): eaav5490. [125] PEI J, ZHAO R, MU X, et al. Single-atom nanozymes for biological applications[J]. Biomater Sci, 2020, 8(23): 6428-6441. [126] KHULBE K, KARMAKAR K, GHOSH S, et al. Nanoceria-based phospholipase-mimetic cell membrane disruptive antibiofilm agents[J]. ACS Appl Bio Materials, 2020, 3(7): 4316-4328. [127] UGRU M M, SHESHADRI S, JAIN D, et al. Insight into the composition and surface corona reliant biological behaviour of quercetin engineered nanoparticles[J]. Colloids Surf A, 2018, 548: 1-9. [128] TEGEDER P, FREITAG M, CHEPIGA K M, et al. N-Heterocyclic carbene-modified Au-Pd alloy nanoparticles and their application as biomimetic and heterogeneous catalysts[J]. Chem-Eur J, 2018, 24(70): 18682-18688. [129] FAN L, TIAN Y, LOU D, et al. Catalytic gold-platinum alloy nanoparticles and a novel glucose oxidase mimic with enhanced activity and selectivity constructed by molecular imprinting[J]. Anal Methods, 2019, 11(36): 4586-4592. [130] HU X, SARAN A, HOU S, et al. Au@PtAg core/shell nanorods: tailoring enzyme-like activities via alloying[J]. RSC Adv, 2013, 3(17): 6095-6105. [131] KOCA F D, YILMAZ D D, ONMAZ N E, et al. Green synthesis of allicin based hybrid nanoflowers with evaluation of their catalytic and antimicrobial activities[J]. Biotechnol Lett, 2020, 42(9): 1683-1690. [132] ALAJMI M F, AHMED J, HUSSAIN A, et al. Green synthesis of Fe3O4 nanoparticles using aqueous extracts of Pandanus odoratissimus leaves for efficient bifunctional electro-catalytic activity[J]. Appl Nanosci, 2018, 8(6): 1427-1435. [133] KORA A J. Plant Arabinogalactan gum synthesized palladium nanoparticles: characterization and properties[J]. J Inorg Organomet Polym Mater, 2019. 29(6): 2054-2063. [134] WANG X, WAN R, GU H, et al. Well-water-dispersed N-trimethyl chitosan/Fe3O4 hybrid nanoparticles as peroxidase mimetics for quick and effective elimination of bacteria[J]. J Biomater Sci, Polym Ed, 2020, 31(8): 969-983. [135] YOU J G, WANG Y T, TSENG W L. Adenosine-related compounds as an enhancer for peroxidase-mimicking activity of nanomaterials: application to sensing of heparin level in human plasma and total sulfate glycosaminoglycan content in synthetic cerebrospinal fluid[J]. ACS Appl Mater Interfaces, 2018, 10(44): 37846-37854. [136] RAJENDRAKUMAR S K, REVURI V, SAMIDURAI M, et al. Peroxidase-mimicking nanoassembly mitigates lipopolysaccharide-induced endotoxemia and cognitive damage in the brain by impeding inflammatory signaling in macrophages[J]. Nano Lett, 2018, 18(10): 6417-6426. [137] ZHANG A, PAN S, ZHANG Y, et al. Carbon-gold hybrid nanoprobes for real-time imaging, photothermal/photodynamic and nanozyme oxidative therapy[J]. Theranostics, 2019, 9(12): 3443-3458. [138] LIU L, WANG X, ZHU S, et al. Controllable targeted accumulation of fluorescent conjugated polymers on bacteria mediated by a saccharide bridge[J]. Chem Mat, 2020, 32(1): 438-447. [139] HUSSAIN S, JOO J, KANG J, et al. Antibiotic-loaded nanoparticles targeted to the site of infection enhance antibacterial efficacy[J]. Nat Biomed Eng, 2018, 2(2): 95-103. [140] WANG X P, GONG A, LUO W H, et al. Remote activation of nanoparticulate biomimetic activity by light triggered pH-jump[J]. Chem Commun, 2018, 54(62): 8641-8644. [141] LI T, QIU H, LIU N, et al. Construction of self-activated cascade metal-organic framework/enzyme hybrid nanoreactors as antibacterial agents[J]. Colloids Surf, B, 2020, 191: 111001. [142] TO E E, VLAHOS R, LUONG R, et al. Endosomal NOX2 oxidase exacerbates virus pathogenicity and is a target for antiviral therapy[J]. Nat Commun, 2017, 8: 69. [143] CHEN G, XU M, ZHAO S, et al. Pompon-like RuNPs-Based theranostic nanocarrier system with stable photoacoustic imaging characteristic for accurate tumor detection and efficient phototherapy guidance[J]. ACS Appl Mater Interfaces, 2017, 9(39): 33645-33659. |
[1] | 颜丽娟, 高添贺, 施冬健, 陈明清. 丁香酚/改性聚乙烯醇抗菌复合膜的制备与性能[J]. 应用化学, 2023, 40(4): 527-535. |
[2] | 马欲杰, 张赢心, 戴桓琰, 徐志民, 韩冰. 3D打印nHA/PEEK-AgNPs复合多孔支架的制备与性能[J]. 应用化学, 2023, 40(4): 536-545. |
[3] | 陈玉竹, 刘思思, 张蒙蒙, 林祥德, 曾冬冬. 基于抗菌性壳聚糖/羧甲基纤维素复合药物涂层的聚氨酯敷料[J]. 应用化学, 2023, 40(2): 252-260. |
[4] | 王佳赫, 刘大勇, 刘伟, 王林, 董彪. 纳米TiO2光催化抗菌应用的研究进展[J]. 应用化学, 2022, 39(4): 629-646. |
[5] | 解晓明, 张嘉琦. 氢键作用驱动原花青素构筑水基抗菌黏合剂[J]. 应用化学, 2022, 39(10): 1533-1542. |
[6] | 杨家强, 吴学姣, 周绪容, 邓玲, 杨红. 蛇床子素酯类衍生物的合成及抗菌活性[J]. 应用化学, 2021, 38(8): 917-922. |
[7] | 崔敏辉, 周惠玲, 唐东升, 肖海华. 应对生物恐怖袭击和生物战的生物安全材料[J]. 应用化学, 2021, 38(5): 467-481. |
[8] | 马一鸣, 周晓, 田云青, 杨静, 张雷. 生物遗传资源保藏技术与生物安全材料的研究进展[J]. 应用化学, 2021, 38(5): 482-497. |
[9] | 蔡满莹, 廖玉辉, 徐伟, 周东方. 防控新冠肺炎的生物安全材料研究进展[J]. 应用化学, 2021, 38(5): 498-509. |
[10] | 谢子旭, 张鹏飞, 王兴. 构筑生物安全材料,发展立体化学抗菌新理念[J]. 应用化学, 2021, 38(5): 510-523. |
[11] | 刘慧, 刘骁, 曹远桥, 刘明, 刘亚栋, 韩苗苗, 季生象. 氨基酸基聚合物在抗菌领域的研究进展[J]. 应用化学, 2021, 38(5): 559-571. |
[12] | 曹灵芝, 王钊铄, 王蓓. 纳米生物材料在抗病毒疫苗佐剂中的应用[J]. 应用化学, 2021, 38(5): 572-581. |
[13] | 林秋棚, 章朱迎, 施冬健, 裴泽军, 陈明清, 倪忠斌. 缓释型壳聚糖/醋酸氯己定复合微球的制备与性能[J]. 应用化学, 2021, 38(12): 1599-1611. |
[14] | 周超, 生程钜, 闻林林. 咪唑盐类聚离子液体抗菌剂的制备及其在水凝胶敷料中的应用[J]. 应用化学, 2021, 38(1): 51-59. |
[15] | 唐东升, 崔建勋, 梁刚豪, 喻盈捷, 周惠玲, 魏登帅, 肖海华. 发展生物安全材料学,筑牢中国国家安全城墙[J]. 应用化学, 2020, 37(9): 985-993. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||