[1] BONACCORSI G, PIERRI F, CINELLI M, et al. Economic and social consequences of human mobility restrictions under COVID-19[J]. Proc Natl Acad Sci USA, 2020, 117(27): 15530-15535. [2] WITTEVEEN D, VELTHORST E. Economic hardship and mental health complaints during COVID-19[J]. Proc Natl Acad Sci USA, 2020, 117(44): 27277-27284. [3] WANG X L. Enhancing the national biosecurity system in China amidst COVID-19 epidemic[J]. J Biosaf Biosecur, 2020, 2(1): 3-4. [4] WHO. WHO coronavirus disease (COVID-19) dashboard[OL]. https://covid19.who.int/table. [2021-04-27]. [5] 李琦. 强化国家生物安全的时代意义与启示[J]. 理论与当代, 2020, 4: 21-23. LI Q. Significance and enlightenment of strengthening national biosecurity[J]. Theory Contemp, 2020, 4: 21-23. [6] RAO L, TIAN R, CHEN X. Cell-membrane-mimicking nanodecoys against infectious diseases[J]. ACS Nano, 2020, 14(3): 2569-2574. [7] ZHU L L, WANG L, ZHANG X Q, et al. Interfacial engineering of graphenic carbon electrodes by antimicrobial polyhexamethylene guanidine hydrochloride for ultrasensitive bacterial detection[J]. Carbon, 2020, 159: 185-194. [8] DING X, YANG C, MOREIRA W, et al. A macromolecule reversing antibiotic resistance phenotype and repurposing drugs as potent antibiotics[J]. Adv Sci, 2020, 7(17): 2001374. [9] PASHA M, HARE C, GHADIRI M, et al. Inter-particle coating variability in a rotary batch seed coater[J]. Chem Eng Res Des, 2017, 120: 92-101. [10] DUFRESNES C, D JEAN T, ZUMBACH S, et al. Early detection and spatial monitoring of an emerging biological invasion by population genetics and environmental DNA metabarcoding[J]. Conserv Sci Pract, 2019, 1(9): e86. [11] BRAY M. Defense against filoviruses used as biological weapons[J]. Antiviral Res, 2003, 57(1/2): 53-60. [12] FENG S, SHEN C, XIA N, et al. Rational use of face masks in the COVID-19 pandemic[J]. Lancet Respir Med, 2020, 8(5): 434-436. [13] GREENBERG N, DOCHERTY M, GNANAPRAGASAM S, et al. Managing mental health challenges faced by healthcare workers during COVID-19 pandemic[J]. BMJ, 2020, 368: m1211. [14] YU Y J, BU F Q, ZHOU H L, et al. Biosafety materials: an emerging new research direction of materials science from COVID-19 outbreak[J]. Mater Chem Front, 2020, 4: 1930-1953. [15] 唐东升, 崔建勋, 梁刚豪, 等. 发展生物安全材料学,筑牢中国国家安全城墙[J]. 应用化学, 2020, 37(9): 985-993. TANG D S, CUI J X, LIANG G H, et al. Developing biosafety materials science and building the national security wall of China[J]. Chinese J Appl Chem, 2020, 37(9): 985-993. [16] Center for Desease Control and Prevention(U.S.). Antibiotic resistance threats in the United States 2019[R]. CDC, 2019. [17] O′Neill J. Antimicrobial resistance: tackling a crisis for the health and wealth of nations[R]. Rev Antimicrob Resist, 2016. [18] JERNIGAN J A, HATFIELD K M, WOLFORD H, et al. Multidrug-resistant bacterial infections in U.S. hospitalized patients, 2012-2017[J]. N Engl J Med, 2020, 382(14): 1309-1319. [19] LICHTER J A, VAN VLIET K J, RUBNER M F. Design of antibacterial surfaces and interfaces: polyelectrolyte multilayers as a multifunctional platform[J]. Macromol, 2009, 42(22): 8573-8586. [20] LI Y, LI G, SHA X L, et al. An intelligent vancomycin release system for preventing surgical site infections of bone tissues[J]. Biomater Sci, 2020, 8(11): 3202-3211. [21] ZHOU M, QIAN Y X, XIE J Y, et al. Poly(2-oxazoline)-based functional peptide mimics: eradicating MRSA infections and persisters while alleviating antimicrobial resistance[J]. Angew Chem, 2020, 59(16): 6412-6419. [22] JIANG W N, XIAO X M, WU Y M, et al. Peptide polymer displaying potent activity against clinically isolated multidrug resistant pseudomonas aeruginosa in vitro and in vivo[J]. Biomater Sci, 2020, 8(2): 739-745. [23] ZHANG Q, MA P C, XIE J Y, et al. Host defense peptide mimicking poly-β-peptides with fast, potent and broad spectrum antibacterial activities[J]. Biomater Sci, 2019, 7(5): 2144-2151. [24] ZHU S X, WANG X Y, YANG Y, et al. Conjugated polymer with aggregation-directed intramolecular forster resonance energy transfer enabling efficient discrimination and killing of microbial pathogens[J]. Chem Mater, 2018, 30(10): 3244-3253. [25] WANG X Y, CUI Q L, YAO C, et al. Conjugated polyelectrolyte-silver nanostructure pair for detection and killing of bacteria[J]. Adv Mater Technol, 2017, 2(7): 1700033. [26] ZHANG P B, LI S L, CHEN H, et al. Biofilm inhibition and elimination regulated by cationic conjugated polymers[J]. ACS Appl Mater Interfaces, 2017, 9(20): 16933-16938. [27] FAN X L, HU M, QIN Z H, et al. Bactericidal and hemocompatible coating via the mixed-charged copolymer[J]. ACS Appl Mater Interfaces, 2018, 10(12): 10428-10436. [28] LI J J, CHA R T, ZHAO X H, et al. Gold nanoparticles cure bacterial infection with benefit to intestinal microflora[J]. ACS Nano, 2019, 13(5): 5002-5014. [29] DAI X M, GUO Q Q, ZHAO Y, et al. Functional silver nanoparticle as a benign antimicrobial agent that eradicates antibiotic-resistant bacteria and promotes wound healing[J]. ACS Appl Mater Interfaces, 2016, 8(39): 25798-25807. [30] HUANG L Y, LOU Y T, ZHANG D W, et al. D-Cysteine functionalised silver nanoparticles surface with a “disperse-then-kill” antibacterial synergy[J]. Chem Eng J, 2020, 381: 122662. [31] ZHOU J L, XIANG H X, FATEMEH Z, et al. Intriguing anti-superbug Cu2O@ZrP hybrid nanosheet with enhanced antibacterial performance and weak cytotoxicity[J]. Nano Res, 2019, 12(6): 1453-1460. [32] WANG X H, FAN H Y, ZHANG F, et al. Antibacterial properties of bilayer biomimetic nano-ZnO for dental implants[J]. ACS Biomater Sci Eng, 2020, 6(4): 1880-1886. [33] XI Y J, WANG Y, GAO J Y, et al. Dual corona vesicles with intrinsic antibacterial and enhanced antibiotic delivery capabilities for effective treatment of biofilm-induced periodontitis[J]. ACS Nano, 2019, 13(12): 13645-13657. [34] ZHOU C C, YUAN Y, ZHOU P Y, et al. Highly effective antibacterial vesicles based on peptide-mimetic alternating copolymers for bone repair[J]. Biomacromolecules, 2017, 18(12): 4154-4162. [35] WANG M Z, ZHOU C C, CHEN J, et al. Multifunctional biocompatible and biodegradable folic acid conjugated poly(ε-caprolactone)-polypeptide copolymer vesicles with excellent antibacterial activities[J]. Bioconjugate Chem, 2015, 26(4): 725-734. [36] LIU Y, BUSSCHER H J, ZHAO B, et al. Surface-adaptive, antimicrobially loaded, micellar nanocarriers with enhanced penetration and killing efficiency in staphylococcal biofilms[J]. ACS Nano, 2016, 10 (4): 4779-4789. [37] CARLOS D B, ANDREAS O, RADOSTIN D N, et al. Building an antifouling zwitterionic coating on urinary catheters using an enzymatically triggered bottom-up approach[J]. ACS Appl Mater Interfaces, 2014, 6(14): 11385-11393. [38] WANG Y F, SHEN J, YUAN J. Design of hemocompatible and antifouling PET sheets with synergistic zwitterionic surfaces[J]. J Colloid Interface Sci, 2016, 480: 205-217. [39] RAN B C, JING C Y, YANG C, et al. Synthesis of efficient bacterial adhesion-resistant coatings by one-step polydopamine-assisted deposition of branched polyethylenimine-g-poly(sulfobetaine methacrylate) copolymers[J]. Appl Surf Sci, 2018, 450: 77-84. [40] PORNPEN S, ARRIYA W, YASUHIKO I, et al. Clickable zwitterionic copolymer as a universal biofilm-resistant coating[J]. Macromol Mater Eng, 2019, 304(9): 1900286. [41] LI B, YUAN Z, JAIN P, et al. De novo design of functional zwitterionic biomimetic material for immunomodulation[J]. Sci Adv, 2020, 6(22): eaba0754. [42] KIM S, JUNG U T, KIM S K, et al. Nanostructured multifunctional surface with antireflective and antimicrobial characteristics[J]. ACS Appl Mater Interfaces, 2015, 7(1): 326-331. [43] LAITMAN I, NATAN M, BANIN E, et al. Synthesis and characterization of fluoro-modified polypropylene films for inhibition of biofilm formation[J]. Colloids Surf B, 2014, 115: 8-14. [44] BI Y C, WANG Z Y, LU L L, et al. A facile route to engineer highly superhydrophobic antibacterial film through polymerizable emulsifier[J]. Prog Org Coat, 2019, 133: 387-394. [45] ZHAO W Q, YANG J, GUO H S, et al. Slime-resistant marine anti-biofouling coating with PVP-based copolymer in PDMS matrix[J]. Chem Eng Sci, 2019, 207: 790-798. [46] YU Q, ISTA L K, L PEZ G P. Nanopatterned antimicrobial enzymatic surfaces combining biocidal and fouling release properties[J]. Nanoscale, 2014, 6(9): 4750-4757. [47] WANG X H, YAN S J, SONG L J, et al. Temperature-responsive hierarchical polymer brushes switching from bactericidal to cell repellency[J]. ACS Appl Mater Interfaces, 2017, 9(46): 40930-40939. [48] WEI T, ZHAN W J, YU Q, et al. Smart biointerface with photoswitched functions between bactericidal activity and bacteria-releasing ability[J]. ACS Appl Mater Interfaces, 2017, 9(31): 25767-25774. [49] WEI T, YU Q, ZHAN W J, et al. A smart antibacterial surface for the on-demand killing and releasing of bacteria[J]. Adv Healthcare Mater, 2016, 5(4): 449-456. [50] ZHU Y W, XU C, ZHANG N, et al. Polycationic synergistic antibacterial agents with multiple functional components for efficient anti-infective therapy[J]. Adv Funct Mater, 2018, 28(14): 1706709. [51] ZHANG T, GU J W, LIU X Y, et al. Bactericidal and antifouling electrospun PVA nanofibers modified with a quaternary ammonium salt and zwitterionic sulfopropylbetaine[J]. Mater Sci Eng C, 2020, 111: 110855. [52] LIU T W, YAN S J, ZHOU R T, et al. Self-adaptive antibacterial coating for universal polymeric substrates based on a micrometer-scale hierarchical polymer brush system[J]. ACS Appl Mater Interfaces, 2020, 12(38), 42576-42585. [53] WEI T, YU Q, CHEN H. Responsive and synergistic antibacterial coatings: fighting against bacteria in a smart and effective way[J]. Adv Healthcare Mater, 2019, 8(3): 1801381. [54] CHEN J, WANG F, LIU Q M, et al. Antibacterial polymeric nanostructures for biomedical applications[J]. Chem Commun, 2014, 50(93): 14482-14493. [55] DING X K, DUAN S, DING X J, et al. Versatile antibacterial materials: an emerging arsenal for combatting bacterial pathogens[J]. Adv Funct Mater, 2018, 28(40): 1802140. [56] DING S, WANG Y F, LI J N, et al. Progress and prospects in chitosan derivatives: modification strategies and medical applications[J]. J Mater Sci Technol, 2020, 12(8): 1005-0302. [57] LIU L, SHI H C, YU H, et al. The recent advances in surface antibacterial strategies for biomedical catheters[J]. Biomater Sci, 2020, 8(15): 4095-4108. [58] DONG A, WANG Y J, GAO Y, et al. Chemical insights into antibacterial N-halamines[J]. Chem Rev, 2017, 117(6): 4806-4862. [59] HANEIN D, GEIGER B, ADDADI L. Differential adhesion of cells to enantiomorphous crystal surfaces[J]. Science, 1994, 263(5152): 1413-1416. [60] HANEIN D, SABANAY H, ADDADI L, et al. Selective interactions of cells with crystal surfaces. implications for the mechanism of cell adhesion[J]. J Cell Sci, 1993, 104(2): 275-288. [61] SUN T L, HAN D, RHEMANN K, et al. Stereospecific interaction between immune cells and chiral surfaces[J]. J Am Chem Soc, 2007, 129(6): 1496-1497. [62] WANG X, GAN H, SUN T L, et al. Stereochemistry triggered differential cell behaviours on chiral polymer surfaces[J]. Soft Mat, 2010, 6(16): 3851-3855. [63] WANG X, GAN H, ZHANG M X, et al. Modulating cell behaviors on chiral polymer brush films with different hydrophobic side groups[J]. Langmuir, 2012, 28(5): 2791-2798. [64] EL-GINDI J, BENSON K, DE COLA L, et al. Cell adhesion behavior on enantiomerically functionalized zeolite L monolayers[J]. Angew Chem Int Ed, 2012, 51(15): 3716-3720. [65] LIU J Y, YUAN F, MA X Y, et al. The cooperative effect of both molecular and supramolecular chirality on cell adhesion[J]. Angew Chem Int Ed, 2018, 57(22): 6475-6479. [66] WANG X, GAN H, SUN T L. Chiral design for polymeric biointerface: the influence of surface chirality on protein adsorption[J]. Adv Funct Mater, 2011, 21(17): 3276-3281. [67] WANG X Y, WANG X F, WANG M Z, et al. Probing adsorption behaviors of BSA onto chiral surfaces of nanoparticles[J]. Small, 2018, 14(16): 1703982. [68] QING G Y, ZHAO S L, XIONG Y T, et al. Chiral effect at protein/graphene interface: a bioinspired perspective to understand amyloid formation[J]. J Am Chem Soc, 2014, 136(30): 10736-10742. [69] DENG J, LI Z, YAO M, et al. Influence of albumin configuration by the chiral polymer-grafted gold nanoparticles[J]. Langmuir, 2016, 32(22): 5608-5616. [70] GAO G B, ZHANG M X, LU P, et al. Chirality-assisted ring-like aggregation of Aβ(1-40) at liquid-solid interfaces: a stereoselective two-step assembly process[J]. Angew Chem Int Ed, 2015, 54(7):2245-2250. [71] ZHOU F, YUAN L, LI D, et al. Cell adhesion on chiral surface: the role of protein adsorption[J]. Colloids Surf B 2011, 90(1): 97-101. [72] TANG K J, GAN H, LI Y, et al. Stereoselective interaction between DNA and chiral surfaces[J]. J Am Chem Soc, 2008, 130(34): 11284-11285. [73] GAN H, TANG K J, SUN T L, et al. Selective adsorption of DNA on chiral surfaces: supercoiled or relaxed conformation[J]. Angew Chem Int Ed, 2009, 48(29): 5282-5286. [74] LUO L Q, LI G F, LUAN D, et al. Antibacterial adhesion of borneol-based polymer via surface chiral stereochemistry[J]. ACS Appl Mater Interfaces, 2014, 6(21): 19371-19377. [75] SUN X L, QIAN Z Y, LUO L Q, et al. Antibacterial adhesion of polymethyl methacrylate modified by borneol acrylate[J]. ACS Appl Mater Interfaces, 2016, 8(42): 28522-28528. [76] SHI B, LUAN D, WANG S H, et al. Borneol-grafted cellulose for antifungal adhesion and fungal growth inhibition[J]. RSC Adv, 2015, 5(64): 51947-51952. [77] YANG L, ZHAN C, HUANG X, et al. Durable antibacterial cotton fabrics based on natural borneol-derived anti-MRSA agents[J]. Adv Healthcare Mater, 2020, 9(11): 2192-2659. [78] WU J H, WANG C H, MU C D, et al. A waterborne polyurethane coating functionalized by isobornyl with enhanced antibacterial adhesion and hydrophobic property[J]. Eur Polym J, 2018, 108: 498-506. [79] XU J Q, ZHAO H J, XIE Z X, et al. Stereochemical strategy advances microbially antiadhesive cotton textile in safeguarding skin flora[J]. Adv Healthcare Mater, 2019, 8(15): e1900232. [80] MENG L, PAN K, ZHU Y, et al. Zwitterionic-based surface via the coelectrodeposition of colloid particles and tannic acid with bacterial resistance but cell adhesion properties[J]. ACS Biomater Sci Eng, 2018, 4(12): 4122-4131. [81] CHENG Q, GUO X, HAO X, et al. Fabrication of robust antibacterial coatings based on an organic-inorganic hybrid system[J]. ACS Appl Mater Interfaces, 2019, 11(45): 42607-42615. [82] WANG X, JING S Y, LIU Y Y, et al. Diblock copolymer containing bioinspired borneol and dopamine moieties: synthesis and antibacterial coating applications[J]. Polymer, 2017, 116: 314-323. [83] WU J H, WANG C H, XIAO Y H, et al. Fabrication of water-resistance and durable antimicrobial adhesion polyurethane coating containing weakly amphiphilic poly(isobornyl acrylate) side chains[J]. Prog Org Coat, 2020, 147: 105812. [84] CHEN C, XIE Z X, ZHANG P F, et al. Cooperative enhancement of fungal repelling performance by surface photografting of stereochemical bi-molecules[J]. Colloid Interface Sci Commun,2021, 40: 100336. [85] XU J Q, XIE Z X, DU F L, et al. One-step anti-superbug finishing of cotton textiles with dopamine-menthol[J]. J Mater Sci Technol, 2020, 69: 79-88. [86] HU J K, SUN B K, ZHANG H H, et al. Terpolymer resin containing bioinspired borneol and controlled release of camphor: synthesis and antifouling coating application[J]. Sci Rep, 2020, 10(1): 1-10. [87] LIU G Q, ZHANG Q, LI Y S, et al. High-throughput preparation of antibacterial polymers from natural product derivatives via the Hantzsch reaction[J]. iScience, 2020, 23(1): 100754. [88] ROO V, BATEMAN A C, SIEMENS K N, et al. Cleanliness in context: reconciling hygiene with a modern microbial perspective[J]. Microbiome, 2017, 5(1): 1-12. |