应用化学 ›› 2021, Vol. 38 ›› Issue (2): 157-169.DOI: 10.19894/j.issn.1000-0518.200229
刘军辉1, 郭旭明1, 宋亚坤1*, 郭新闻2*
收稿日期:
2020-08-04
接受日期:
2020-10-13
出版日期:
2021-02-01
发布日期:
2021-04-10
通讯作者:
*E-mail:songyakunly@163.com; guoxw@dlut..edu.cn
基金资助:
LIU Jun-Hui1, GUO Xu-Ming1, SONG Ya-Kun1*, GUO Xin-Wen2*
Received:
2020-08-04
Accepted:
2020-10-13
Published:
2021-02-01
Online:
2021-04-10
Supported by:
摘要: 当前,世界范围内的能源利用面临着巨大的挑战,开发绿色洁净能源十分重要。 通过水解氨硼烷制备清洁可再生的氢气是解决能源问题的有效途径之一 。 选择合适的催化剂有效提高制氢效率是氨硼烷水解制氢的关键,开发高效安全的催化剂一直是该领域研究的重点和热点。 本文从影响氨硼烷水解制氢反应中催化剂催化性能的因素出发,综述了活性金属组分和载体在催化剂制备过程中以及催化氨硼烷制氢反应中的作用。 最后,对催化氨硼烷水解制氢过程所存在的问题以及今后的发展进行了总结和展望。
中图分类号:
刘军辉, 郭旭明, 宋亚坤, 郭新闻. 催化氨硼烷水解制氢研究进展[J]. 应用化学, 2021, 38(2): 157-169.
LIU Jun-Hui, GUO Xu-Ming, SONG Ya-Kun, GUO Xin-Wen. Recent Advances in Hydrogen Generation by Catalytic Hydrolysis of Ammonia Borane[J]. Chinese Journal of Applied Chemistry, 2021, 38(2): 157-169.
[1] SARTBAEVA A, KUZNETSOV V L, WELLS S A, et al. Hydrogen nexus in a sustainable energy future[J]. Energy Environ Sci, 2008, 1(1):79-85. [2] SCHAPBACH L, ZUTTEL A. Hydrogen-storage materials for mobile applications[J]. Nature, 2001, 414(6861):353-358. [3] ZHAN W W, ZHU Q L, XU Q. Dehydrogenation of ammonia borane by metal nanoparticle catalysts[J]. ACS Catal, 2016, 6(10):6892-6905. [4] LU Z, SCHWEIGHAUSER L, HAUSMANN H, et al. Metal-free ammonia-borane dehydrogenation catalyzed by a bis(borane) Lewis acid[J]. Angew Chem Int Ed, 2015, 54(51):15556-15559. [5] YAO Q L, DING Y Y, LU Z H. Noble-metal-free nanocatalysts for hydrogen generation from boron- and nitrogen-based hydrides[J]. Inorg Chem Front, 2020,7: 3837-3874.. [6] 李燕, 邓雨真, 俞晶铃, 等. 氨硼烷分解制氢及其再生的研究进展[J]. 化工进展, 2019, 38(12):5330-5338. LI Y, DENG Y Z, YU J L,et al. Research progress in hydrogen production from decomposition of ammonia borane and its regeneration[J]. Chem Ind Eng Prog, 2019, 38(12):5330-5338. [7] SHRESTHA R, DIYABALANAGE H, SEMELSBERGER T, et al. Catalytic dehydrogenation of ammonia borane in non-aqueous medium[J]. Int J Hydrogen Energy, 2009, 34(6):2616-2621. [8] CALISKAN S, ZAHMAKIRAN M, OZKAR S. Zeolite confined rhodium(0) nanoclusters as highly active, reusable, and long-lived catalyst in the methanolysis of ammonia-borane[J]. Appl Catal B, 2010, 93(3/4):387-394. [9] YAMADA Y, YANO K, XU Q, et al. Cu/Co3O4 nanoparticles as catalysts for hydrogen evolution from ammonia borane by hydrolysis[J]. J Phys Chem C, 2010, 114:16456-16462. [10] XU Q, CHANDRA M. Catalytic activities of non-noble metals for hydrogen generation from aqueous ammonia-borane at room temperature[J]. J Power Sources, 2006, 163(1):364-370. [11] CHANDRA M, XU Q. A high-performance hydrogen generation system:transition metal-catalyzed dissociation and hydrolysis of ammonia-borane[J]. J Power Sources, 2006, 156(2):190-194. [12] CHANDRA M, XU Q. Room Temperature hydrogen generation from aqueous ammonia-borane using noble metal nano-clusters as highly active catalysts[J]. J Power Sources, 2007, 168(1):135-142. [13] 李年谱. 钌基催化剂催化氨硼烷水解制氢性能研究[D]. 2019, 桂林:桂林电子科技大学. LI N P. Ru-based catalysts for catalytic hydrogen production ammonia-borane hydrolysis[D]. 2019, Guilin:Guilin University of Electronic Science and Technology. [14] ZHOU Q X, YANG H X, XU C X. Nanoporous Ru as highly efficient catalyst for hydrolysis of ammonia borane[J]. Int J Hydrogen Energy, 2016, 41(30):12714-12721. [15] AKBAYRAK S, TONBUL Y, ZKAR S. Ceria-supported ruthenium nanoparticles as highly active and long-lived catalyst in hydrogen generation from the hydrolysis of ammonia borane[J]. Dalton Trans, 2016, 45(27):10969-10978. [16] DU C, AO Q, CAO N, et al. Facile synthesis of monodisperse ruthenium nanoparticles supported on graphene for hydrogen generation from hydrolysis of ammonia borane[J]. Int J Hydrogen Energy, 2015, 40(18):6180-6187. [17] ZHONG F Y, WANG Q, XU C L, et al. Catalytically active rhodium nanoparticles stabilized by nitrogen doped carbon for the hydrolysis of ammonia borane[J]. Int J Hydrogen Energy, 2018, 43(49):22273-22280. [18] AKBAYRAK S, GENÇTÜRK S, MORKAN , et al. Rhodium(0) nanoparticles supported on nanotitania as highly active catalyst in hydrogen generation from the hydrolysis of ammonia borane[J]. RSC Adv, 2014, 4(26):13742-13748. [19] KARAHAN S, ZAHMAKIRAN M, OZKAR S. A facile one-step synthesis of polymer supported rhodium nanoparticles in organic medium and their catalytic performance in the dehydrogenation of ammonia-borane[J]. Chem Commun, 2012, 48(8):1180-1182. [20] TONBUL Y, AKBAYRAK S, OZKAR S. Magnetically separable rhodium nanoparticles as catalysts for releasing hydrogen from the hydrolysis of ammonia borane[J]. J Colloid Interface Sci, 2019, 553:581-587. [21] CHEN J M, LU Z H, WANG Y Q, et al. Magnetically recyclable Ag/SiO2-CoFe2O4 nanocomposite as a highly active and reusable catalyst for H2 production[J]. Int J Hydrogen Energy, 2015, 40(14):4777-4785. [22] XU P, LU W W, ZHANG J J, et al. Efficient hydrolysis of ammonia borane for hydrogen evolution catalyzed by plasmonic Ag@Pd core-shell nanocubes[J]. ACS Sustainable Chem Eng, 2020, 8(33):12366-12377. [23] AIJAZ A, KARKAMKAR A, CHOI Y, et al. Immobilizing highly catalytically active Pt nanoparticles inside the pores of metal-organic framework:a double solvents approach[J]. J Am Chem Soc, 2012, 134(34):13926-13929 [24] CHEN W Y, JI J, DUAN X Z, et al. Unique reactivity in Pt/CNT catalyzed hydrolytic dehydrogenation of ammonia borane[J]. Chem Commun, 2014, 50(17):2142-2144. [25] TONBUL Y, AKBAYRAK S, ZKAR S. Palladium(0) nanoparticles supported on ceria:highly active and reusable catalyst in hydrogen generation from the hydrolysis of ammonia borane[J]. Int J Hydrogen Energy, 2016, 41(26):11154-11162. [26] AKBAYRAK S, KAYA M, VOLKAN M, et al. Palladium(0) nanoparticles supported on silica-coated cobalt ferrite: a highly active, magnetically isolable and reusable catalyst for hydrolytic dehydrogenation of ammonia borane[J]. Appl Catal B 2014, 147:387-393. [27] XI P X, CHEN F, XIE G Q, et al. Surfactant free RGO/Pd nanocomposites as highly active heterogeneous catalysts for the hydrolytic dehydrogenation of ammonia borane for chemical hydrogen storage[J]. Nanoscale, 2012, 4(18):5597-5601. [28] HU H, XIN J H, HU H, et al. Synthesis and stabilization of metal nanocatalysts for reduction reactions—a review[J]. J Mater Chem A, 2015, 3:11157-11182. [29] JIANG X, XIONG Y X, WANG Y F, et al. Treelike two-level PdxAgy nanocrystals tailored for bifunctional fuel cell electrocatalysis[J]. J Mater Chem A, 2019, 7:5248-5257. [30] ZHANG N, SHAO Q, XIAO X H, et al. Advanced catalysts derived from composition-segregated platinum-nickel nanostructures:new opportunities and challenges[J]. Adv Funct Mater, 2019, 29(13):1808161-1080188. [31] FANG H, YANG J H, WEN M, et al. Nanoalloy materials for chemical catalysis[J]. Adv Mater, 2018, 30(17):1705698-1705707. [32] LI S, ZHOU Y T, KANG X, et al. A Simple and effective principle for a rational design of heterogeneous catalysts for dehydrogenation of formic acid[J]. Adv Mater, 2019, 31:1806781-1806787. [33] YAO K S, ZHAO C S, WANG N, et al. An aqueous synthesis of porous PtPd nanoparticles with reversed bimetallic structures for highly efficient hydrogen generation from ammonia borane hydrolysis[J]. Nanoscale, 2020, 12(2):638-647. [34] RAKAP M. PVP-stabilized Ru-Rh nanoparticles as highly efficient catalysts for hydrogen generation from hydrolysis of ammonia borane[J]. J Alloys Comp, 2015, 649:1025-1030. [35] RAKAP M. Hydrogen generation from hydrolysis of ammonia borane in the presence of highly efficient poly(n-vinyl-2-pyrrolidone)-protected platinum-ruthenium nanoparticles[J]. Appl Catal A, 2014, 478:15-20. [36] RAKAP M. The highest catalytic activity in the hydrolysis of ammonia borane by poly(n-vinyl-2-pyrrolidone)-protected palladium-rhodium nanoparticles for hydrogen generation[J]. Appl Catal B, 2015, 163:129-134. [37] WANG C L, TUNINETTI J, WANG Z, et al. Hydrolysis of ammonia-borane over Ni/ZIF-8 nanocatalyst:high efficiency, mechanism, and controlled hydrogen release[J]. J Am Chem Soc, 2017, 139(33):11610-11615. [38] METIN O, OZKAR S. Hydrogen generation from the hydrolysis of ammonia-borane and sodium borohydride using water-soluble polymer-stabilized cobalt(0) nanoclusters catalyst[J]. Energy Fuels, 2009, 23:3517-3526. [39] RAKAP M, ZKAR S. Hydroxyapatite-supported cobalt(0) nanoclusters as efficient and cost-effective catalyst for hydrogen generation from the hydrolysis of both sodium borohydride and ammonia-borane[J]. Catal Today, 2005, 98(1):17-25. [40] YAO Q, LU Z H, ZHANG Z J, et al. One-Pot Synthesis of core-shell Cu@SiO2 nanospheres and their catalysis for hydrolytic dehydrogenation of ammonia borane and hydrazine borane[J]. Sci Rep, 2014, 4:7597-7604. [41] LI J, ZHU Q L, XU Q. Non-noble bimetallic CuCo nanoparticles encapsulated in the pores of metal-organic frameworks:synergetic catalysis in the hydrolysis of ammonia borane for hydrogen generation[J]. Catal Sci Technol, 2015, 5:525-530. [42] SINGH A, XU Q. Synergistic catalysis over Bimetallic alloy nanoparticles[J]. ChemCatChem, 2013, 5(3):652-676. [43] XU M, HUAI X L, ZHANG H. Highly dispersed CuCo nanoparticles supported on reduced graphene oxide as high-activity catalysts for hydrogen evolution from ammonia borane hydrolysis[J]. J Nanopart Res, 2018, 20(12):329-341. [44] WANG H A, ZHOU L M, HAN M, et al. CuCo nanoparticles supported on hierarchically porous carbon as catalysts for hydrolysis of ammonia borane[J]. J Alloys Compd, 2015, 651:382-388. [45] ZHENG H C, FENG K, SHANG Y P, et al. Cube-like CuCoO nanostructures on reduced graphene oxide for H2 Generation from ammonia borane[J]. Inorg Chem Front, 2018, 5:1180-1187. [46] FENG K, ZHONG J, ZHAO B H, et al. CuxCo1-xO nanoparticles on graphene oxide as a synergistic catalyst for high-efficiency hydrolysis of ammonia-borane[J]. Angew Chem Int Ed, 2016, 55:1-6. [47] YANG Y W, ZHANG F, WANG H L, et al. Catalytic hydrolysis of ammonia borane by cobalt nickel nanoparticles supported on reduced graphene oxide for hydrogen generation[J]. J Nanomater, 2014, 2014:1-9. [48] WANG Q T, ZHANG Z, LIU J, et al. Bimetallic non-noble CoNi nanoparticles monodispersed on multiwall carbon nanotubes:highly efficient hydrolysis of ammonia borane[J]. Mater Chem Phys, 2017, 204:58-61. [49] FENG W, LAN Y, NAN C, et al. In situ facile synthesis of bimetallic CoNi catalyst supported on graphene for hydrolytic dehydrogenation of amine borane[J]. Int J Hydrogen Energy, 2014, 39(7):3371-3380. [50] YEN H, SEO Y, KALIAGUINE S, et al. Role of metal-support interactions, particle size, and metal-metal synergy in CuNi nanocatalysts for H2 generation[J]. ACS Catal, 2015, 5(9):5505-5511. [51] LU Z H, LI J P, ZHU A L, et al. Catalytic hydrolysis of ammonia borane via magnetically recyclable copper iron nanoparticles for chemical hydrogen storage[J]. Int J Hydrogen Energy, 2013, 38(13):5330-5337. [52] LIANG Z J, XIAO X Z, YU X Y, et al. Non-noble trimetallic Cu-Ni-Co nanoparticles supported on metal-organic frameworks as highly efficient catalysts for hydrolysis of ammonia borane[J]. J Alloys Comp, 2018, 741:501-508. [53] LIAO J Y, FENG Y F, LIN W M, et al. CuO-NiO/Co3O4 hybrid nanoplates as highly active catalyst for ammonia borane hydrolysis[J]. Int J Hydrogen Energy, 2020, 45(15):8168-8176. [54] YAO Q L, YANG K, HONG X L, et al. Base-promoted hydrolytic dehydrogenation of ammonia borane catalyzed by noble-metal-free nanoparticles[J]. Catal Sci Technol, 2018, 8(3):870-877. [55] QI X H, LI X C, CHEN B, et al. Highly active nanoreactors: patchlike or thick Ni coating on Pt nanoparticles based on confined catalysis[J]. ACS Appl Mater Interfaces, 2016, 8:1922-1928 [56] LI Z, HE T, MATSUMURA D, et al. Atomically dispersed Pt on the surface of Ni particles:synthesis and catalytic function in hydrogen generation from aqueous ammonia-borane[J]. ACS Catal, 2017, 7:6762-6769. [57] MORI K, MIYAWAKI K, YAMASHITA H. Ru and Ru-Ni nanoparticles on TiO2 support as extremely active catalysts for hydrogen production from ammonia-borane[J]. ACS Catal, 2016, 6(5):3128-3135. [58] CAO N, SU J, LUO W, et al. Hydrolytic dehydrogenation of ammonia borane and methylamine borane catalyzed by graphene supported Ru@Ni core-shell nanoparticles[J]. Int J Hydrogen Energy, 2014, 39(1):426-435. [59] CHEN Y Z, XU Q, YU S H, et al. Tiny Pd@Co core-shell nanoparticles confined inside a metal-organic framework for highly efficient catalysis[J]. Small, 2014, 11(1):71-76. [60] QU X, YU Z, LI Z, et al. CoRh nanoparticles supported on ZIF-67 as highly efficient catalysts for hydrolytic dehydrogenation of ammonia boranes for chemical hydrogen storage[J]. Int J Hydrogen Energy, 2017, 42(51):30037-30043. [61] CIFTCI N, METIN O. Monodisperse nickel-palladium alloy nanoparticles supported on reduced graphene oxide as highly efficient catalysts for the hydrolytic dehydrogenation of ammonia borane[J]. Int J Hydrogen Energy, 2014, 39:18863-18870. [62] LI X J, ZENG C M, FAN G Y. Magnetic RuCo nanoparticles supported on two-dimensional titanium carbide as highly active catalysts for the hydrolysis of ammonia borane[J]. Int J Hydrogen Energy, 2015, 40(30):9217-9224. [63] ZHOU X, MENG X F, WANG J M, et al. Boron nitride supported NiCoP nanoparticles as noble metal-free catalyst for highly efficient hydrogen generation from ammonia borane[J]. Int J Hydrogen Energy, 2019, 44(10):4764-4770. [64] FENG X, ZHAO Y H, LIU D K, et al. Towards high activity of hydrogen production from ammonia borane over efficient non-noble Ni5P4 catalyst[J]. Int J Hydrogen Energy, 2018, 43:17112-17120. [65] QU X P, JIANG R, LI Q, et al. Hydrolysis of ammonia borane catalyzed by NiCoP/OPC-300 nanocatalysts: high selectivity, efficiency and mechanism[J]. Green Chem, 2019, 21:850-860. [66] LIN Y X, YANG L, JIANG H L, et al. Boosted reactivity of ammonia borane dehydrogenation over Ni/Ni2P heterostructure[J]. J Phys Chem Lett, 2019, 10:1048-1054. [67] FU Z G, XU Y, CHAN L F, et al. Highly efficient hydrolysis of ammonia borane by anion (-OH, F-, Cl-)-tuned interactions between reactant molecules and CoP nanoparticles[J]. Chem Commun, 2017, 53(4):705-708. [68] PENG C, KANG L, CAO S, et al. Nanostructured Ni2P as a robust catalyst for the hydrolytic dehydrogenation of ammonia-borane[J]. Angew Chem Int Ed, 2015, 127:15951-15955. [69] Hou C C, Li Q, Wang C J, et al. Ternary Ni-Co-P nanoparticles and their hybrids with graphene as noble-metal-free catalysts to boost the hydrolytic dehydrogenation of ammonia-borane[J]. Energy Environ Sci, 2017, 10(8):1770-1776. [70] LI W A, NIE X W, JIANG X, et al. ZrO2 Support imparts superior activity and stability of Co Catalysts for CO2 methanation[J]. Appl Catal B, 2018, 220:397-408. [71] WAN H J, WU B S, XIANG H W, et al. Fischer-tropsch synthesis:influence of support incorporation manner on metal dispersion, metal-support interaction, and activities of iron catalysts[J]. ACS Catal, 2012, 2(9):1877-1883. [72] AKBAYRAK S, TONBU Y, ZKAR S, et al. Ceria supported rhodium nanoparticles:superb catalytic activity in hydrogen generation from the hydrolysis of ammonia borane[J]. Appl Catal B, 2016, 198:162-170. [73] ZAHMAKIRAN M, AYVAL T, AKBAYRAK S, et al. Zeolite framework stabilized nickel(0) nanoparticles:active and long-lived catalyst for hydrogen generation from the hydrolysis of ammonia-borane and sodium borohydride[J]. Catal Today, 2011, 170(1):76-84. [74] GIL-SAN-MILLAN R, GRAU-ATIENZA A, JOHNSON D T, et al. Improving hydrogen production from the hydrolysis of ammonia borane by using multifunctional catalysts[J]. Int J Hydrogen Energy, 2018, 43(36):17100-17111. [75] ZHONG W D, TIAN X K, YANG C, et al. Active 3D Pd/graphene aerogel catalyst for hydrogen generation from the hydrolysis of ammonia-borane[J]. Int J Hydrogen Energy, 2016, 41:15225-15235. [76] ZHAO B H, FENG K, WANG Y, et al. PtxNi10-xO Nanoparticles supported on N-doped graphene oxide with a synergetic effect for highly efficient hydrolysis of ammonia borane[J]. Catal Sci Technol, 2017, 7:5135-5142. [77] YAO Q L, LU Z H, YANG Y W, et al. Facile synthesis of graphene-supported Ni-CeOx nanocomposites as highly efficient catalysts for hydrolytic dehydrogenation of ammonia borane[J]. Nano Res, 2018, 11(8):4412-4422. [78] YAO Q L, LU Z H, HUANG W, et al. High Pt-like activity of the Ni-Mo/graphene catalyst for hydrogen evolution from hydrolysis of ammonia borane[J]. J Mater Chem A, 2016, 4:8579-8583. [79] KANG K, GU X J, GUO L L, et al. Efficient catalytic hydrolytic dehydrogenation of ammonia borane over surfactant-free bimetallic nanoparticles immobilized on amine-functionalized carbon nanotubes[J]. Int J Hydrogen Energy, 2015, 40:12315-12324. [80] GUO L L, GU X J, KANG K, et al. Porous nitrogen-doped carbon-immobilized bimetallic nanoparticles as highly efficient catalysts for hydrogen generation from hydrolysis of ammonia borane[J]. J Mater Chem A, 2015, 3: 22807-22815. [81] WANG W, LU Z H, LUO Y, et al. Mesoporous carbon nitride supported Pd and Pd-Ni nanoparticles as highly efficient catalyst for catalytic hydrolysis of NH3BH3[J]. ChemCatChem, 2018, 10(7):1620-1626. [82] CHENG N Y, REN L, XU X, et al. Recent development of zeolitic imidazolate frameworks (ZIFs) derived porous carbon based materials as electrocatalysts[J]. Adv Energy Mater, 2018, 8(25):1801257-1801277. [83] DANG S, ZHU Q L, XU Q. Nanomaterials derived from metal-organic frameworks[J]. Nat Rev Mater, 2017, 3:17075-17088. [84] INDRA A, SONG T, PAIK U. Metal organic framework derived materials:progress and prospects for the energy conversion and storage[J]. Adv Mater, 2018, 30(39):1705146-1705170. [85] LIU J H, ZHANG A F, LIU M, et al. Fe-MOF-derived highly active catalysts for carbon dioxide hydrogenation to valuable hydrocarbons[J]. J CO2 Util, 2017, 21:100-107. [86] LI W H, ZHANG A F, JIANG X, et al. Low temperature CO2 methanation: ZIF-67-Derived Co-based porous carbon catalysts with controlled crystal morphology and size[J]. ACS Sustainable Chem Eng, 2017, 5(9):7824-7831. [87] ZHANG X L, ZHANG D X, CHANG G G, et al. Bimetallic (Zn/Co) MOFs-derived highly dispersed metallic Co/HPC for completely hydrolytic dehydrogenation of ammonia-borane[J]. Ind Eng Chem Res, 2019, 58(17):7209-7216. [88] PERRYIV J J, PERMAN J A, ZAWOROTKO M J. Design and synthesis of metal-organic frameworks using metal-organic polyhedra as supermolecular building blocks[J]. Chem Soc Rev, 2009, 38:1400-1417 [89] LI H, Eddaoudi M, O'KEEFFE M, et al. Design and synthesis of an exceptionally stable and highly porous metal-organic framework[J]. Nature, 1999, 402:276-279. [90] CUI Y J, LI B, HE H J, et al. Metal-organic frameworks as platforms for functional materials[J]. Acc Chem Res, 2016, 49:483-493. [91] ZHANG H B, NAI J W, YU L, et al. Metal-organic-framework-based materials as platforms for renewable energy and environmental applications[J]. Joule, 2017, 1:77-107. [92] FEREY G, MELLOT-DRAZNIEKS C, SERRE C, et al. A chromium terephthalate-based solid with unusually large pore volumes and surface area[J]. Science, 2005, 309(5743):2040-2042. [93] ZHU Q L, LI J, XU Q. Immobilizing metal nanoparticles to metal-organic frameworks with size and location control for optimizing catalytic performance[J]. J Am Chem Soc, 2013, 135(28):10210-10213. [94] GAO D D, ZHANG Y H, ZHOU L Q, et al. CuNi NPs supported on MIL-101 as highly active catalysts for the hydrolysis of ammonia borane[J]. Appl Surf Sci, 2017, 427:114-122. [95] YANG K Z, ZHOU L Q, XIONG X, et al. RuCuCo nanoparticles supported on MIL-101 as a novel highly efficient catalysts for the hydrolysis of ammonia borane[J]. Micro Meso Mater, 2016, 225:1-8. [96] NAN C, TENG L, JUN S, et al. Ruthenium supported on MIL-101 as an efficient catalyst for hydrogen generation from hydrolysis of amine boranes[J]. New J Chem, 2014, 38:4032-4035. [97] CHEN Y Z, LIANG L F, YANG Q H, et al. A seed-mediated approach to the general and mild synthesis of non-noble metal nanoparticles stabilized by a metal-organic framework for highly efficient catalysis[J]. Mater Horiz, 2015, 2:606-612. [98] WEN L, SU J, WU X J, et al. Ruthenium supported on MIL-96:an efficient catalyst for hydrolytic dehydrogenation of ammonia borane for chemical hydrogen storage[J]. Int J Hydrogen Energy, 2014, 39:17129-17135. [99] LU D, YU G F, LI Y, et al. RuCo NPs supported on MIL-96(Al) as highly active catalysts for the hydrolysis of ammonia borane[J]. J Alloys Comp, 2017, 694:662-671. [100] YANG K Z, ZHOU L Q, YU G F, et al. Ru nanoparticles supported on MIL-53(Cr, Al) as efficient catalysts for hydrogen generation from hydrolysis of ammonia borane[J]. Int J Hydrogen Energy, 2016, 41(15):6300-6309. [101] KANG J X, CHEN T W, ZHANG D F, et al. PtNiAu trimetallic nanoalloys enabled by a digestive-assisted process as highly efficient catalyst for hydrogen generation[J]. Nano Energy, 2016, 23:145-152. |
[1] | 张毅城, 查飞, 唐小华, 常玥, 田海锋, 郭效军. 非均相催化制备有机过氧化物的研究进展[J]. 应用化学, 2023, 40(6): 769-788. |
[2] | 于宜辰, 张雨宸, 张耀远, 吴芹, 史大昕, 陈康成, 黎汉生. 本体金属氧化物在丙烷无氧脱氢中的研究进展[J]. 应用化学, 2023, 40(6): 789-805. |
[3] | 李慧慧, 姚开胜, 赵亚南, 范李娜, 田钰琳, 卢伟伟. 离子液体调控合成Pt-Pd双金属纳米材料及其催化氨硼烷水解释氢[J]. 应用化学, 2023, 40(4): 597-609. |
[4] | 李冰, 刘军辉, 宋亚坤, 李想, 郭旭明, 熊健. 金属-有机骨架材料在催化氨硼烷水解释氢中的研究进展[J]. 应用化学, 2023, 40(3): 329-340. |
[5] | 王路飞, 甄蒙蒙, 沈伯雄. 贫电解液下电催化剂对调控锂硫电池性能的研究进展[J]. 应用化学, 2023, 40(2): 188-209. |
[6] | 曹蓉, 夏杰桢, 廖漫华, 赵路超, 赵晨, 吴琪. 单原子催化剂在电化学合成氨中的理论研究进展[J]. 应用化学, 2023, 40(1): 9-23. |
[7] | 张丹, 尚润梅, 赵振涛, 李君华, 邢锦娟. V/Ce-Al2O3催化甲醇选择性氧化制备二甲氧基甲烷[J]. 应用化学, 2022, 39(9): 1429-1436. |
[8] | 王凯, 杨海宽, 刘慧兰, 路嘉敏, 张晨. 基于豆甾醇衍生物的超分子凝胶的合成与性能[J]. 应用化学, 2022, 39(9): 1453-1463. |
[9] | 王显, 杨小龙, 马荣鹏, 刘长鹏, 葛君杰, 邢巍. 单原子分散的Ir-N-C燃料电池阳极抗中毒催化剂[J]. 应用化学, 2022, 39(8): 1202-1208. |
[10] | 刘也, 郭少波, 梁艳莉, 葛红光, 马剑琪, 刘智峰, 刘波. 核壳型纳米复合材料CuFe2O4@NH2@Pt的制备及催化性能[J]. 应用化学, 2022, 39(8): 1237-1245. |
[11] | 杜卫民, 刘欣, 朱琳, 付佳敏, 郭文山, 杨晓晴, 双培硕. 三元镍基硫属化物纳米棒阵列的简单合成及其高效的电催化析氧性能[J]. 应用化学, 2022, 39(8): 1252-1261. |
[12] | 张超. 单原子催化剂电催化还原二氧化碳研究进展[J]. 应用化学, 2022, 39(6): 871-887. |
[13] | 李世帅, 刘佳奇, 王佳一, 杨江峰. 多级孔Beta沸石合成研究进展[J]. 应用化学, 2022, 39(6): 912-926. |
[14] | 王岩, 张树聪, 汪兴坤, 刘志承, 王焕磊, 黄明华. 电解海水析氢反应过渡金属基催化剂的研究进展[J]. 应用化学, 2022, 39(6): 927-940. |
[15] | 李锋, 路世玉, 张宇, 郭丽君, 翟雪, 李翠勤. 硅烷基Schiff碱共价修饰纳米二氧化硅负载过渡金属催化乙烯齐聚性能[J]. 应用化学, 2022, 39(6): 949-959. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||