[1] PAN H, HU Y S, CHEN L. Room-temperature stationary sodium-ion batteries for large-scale electric energy storage[J]. Energy Environ Sci, 2013, 6(8): 2338-2360. [2] TAO L, YANG Y, WANG H, et al. Sulfur-nitrogen rich carbon as stable high capacity potassium ion battery anode:performance and storage mechanisms[J]. Energy Storage Mater, 2020, 27: 212-225. [3] LU G, WANG H, ZHENG Y, et al. Metal-organic framework derived N-doped CNT@porous carbon for high-performance sodium and potassium-ion storage[J]. Electrochim Acta, 2019, 319: 541-551. [4] FAN L, LIU Q, CHEN S, et al. Potassium-based dual ion battery with dual-graphite electrode[J]. Small, 2017, 13(30): 1701011. [5] RAJAGOPALAN R, TANG Y, JI X, et al. Advancements and challenges in potassium ion batteries:a comprehensive review[J]. Adv Funct Mater, 2020, 30(12): 1909486. [6] WU X, CHEN Y, XING Z, et al. Advanced carbon-based anodes for potassium-ion batteries[J]. Adv Energy Mater, 2019, 9(21): 1900343. [7] SONG K, LIU C, MI L, et al. Recent progress on the alloy-based anode for sodium-ion batteries and potassium-ion batteries[J]. Small, 2019: 1903194. [8] XIONG P, WU J, ZHOU M, et al. Bismuth-antimony alloy nanoparticle@porous carbon nanosheet composite anode for high-performance potassium-ion batteries[J]. ACS Nano, 2019, 14(1): 1018-1026. [9] KIM D S, BAE J, KWON S H, et al. Synergistic effect of antimony-triselenide on addition of conductive hybrid matrix for high-performance lithium-ion batteries [J]. J Alloys Comp, 2020, 828: 154410. [10] ZHAO Y, MANTHIRAM A. High-capacity, high-rate Bi-Sb Alloy anodes for lithium-ion and sodium-ion batteries[J]. Chem Mater, 2015, 27(8): 3096-3101. [11] WANG J, FAN L, LIU Z, et al. In situ alloying strategy for exceptional potassium ion batteries[J]. ACS Nano, 2019, 13(3): 3703-3713. [12] GAO H, NIU J, ZHANG C, et al. A dealloying synthetic strategy for nanoporous bismuth antimony anodes for sodium ion batteries[J]. ACS Nano, 2018, 12(4): 3568-3577. [13] ZHENG W, YU X, GUO Z, et al. Magnetron sputtering deposition of MSb (M=Fe, Ni, Co) thin films as negative electrodes for Li-ion and Na-ion batteries[J]. Mater Res Express, 2019, 6(5): 056410. [14] WANG S, XIONG P, GUO X, et al. A stable conversion and alloying anode for potassium-ion batteries:a combined strategy of encapsulation and confinement[J]. Adv Funct Mater, 2020: 2001588. [15] GABAUDAN V, BERTHELOT R, STIEVANO L, et al. Inside the alloy mechanism of Sb and Bi electrodes for K-Ion batteries[J]. J Phys Chem C, 2018, 122(32): 18266-18273. [16] FAN S, SUN T, RUI X, et al. Cooperative enhancement of capacities in nanostructured SnSb/carbon nanotube network nanocomposite as anode for lithium ion batteries[J]. J Power Sources, 2012, 201: 288-293. [17] HUANG Z, CHEN Z, DING S, et al. Multi-protection from nano channels and graphene of SnSb-graphene-carbon composites ensuring high properties for potassium-ion batteries[J]. Solid State Ionics, 2018, 324: 267-275. [18] YANG K, TANG J, LIU Y, et al. Controllable synthesis of peapod-like Sb@C and corn-like C@Sb nanotubes for sodium storage[J]. ACS Nano, 2020, 14(5): 5728-5737. [19] YUAN Y, JAN S, WANG Z, et al. A simple synthesis of nanoporous Sb/C with high Sb content and dispersity as an advanced anode for sodium ion batteries[J]. J Mater Chem A, 2018, 6(14): 5555-5559. [20] PHAM X M, NGO D T, LEH T T, et al. A self-encapsulated porous Sb-C nanocomposite anode with excellent Na-ion storage performance[J]. Nanoscale, 2018, 10(41): 19399-19408. [21] GABAUDAN V, TOUJA J, COT D, et al. Double-walled carbon nanotubes, a performing additive to enhance capacity retention of antimony anode in potassium-ion batteries[J]. Electrochem Common, 2019, 105: 106493. [22] HAN Y, LI T, LI Y, et al. Stabilizing antimony nanocrystals within ultrathin carbon nano sheets for high-performance K-ion storage[J]. Energy Storage Mater, 2019, 20: 46-54. [23] YI Z, LIN N, ZHANG W, et al. Preparation of Sb nanoparticles in molten salt and their potassium storage performance and mechanism[J]. Nanoscale, 2018, 10(27): 13236-13241. [24] LUO W, LI F, ZHANG W, et al. Encapsulating segment-like antimony nanorod in hollow carbon tube as long-lifespan, high-rate anodes for rechargeable K-ion batteries [J]. Nano Res, 2019, 12(5): 1025-1031. [25] LIU S, FENG J, BIAN X, et al. The morphology-controlled synthesis of a nanoporous-antimony anode for high-performance sodium-ion batteries[J]. Energy Environ Sci, 2016, 9(4): 1229-1236. [26] WANG H, WU X, QI X, et al. Sb nanoparticles encapsulated in 3D porous carbon as anode material for lithium-ion and potassium-ion batteries[J]. Mater Res Bull, 2018, 103: 32-37. [27] AN Y, TIAN Y, CI L, et al. Micron-sized nanoporous antimony with tunable porosity for high-performance potassium-ion batteries[J]. ACS Nano, 2018, 12(12): 12932-12940. [28] LIANG L, XU Y, WANG C, et al. Large-scale highly ordered Sb nanorod array anodes with high capacity and rate capability for sodium-ion batteries[J]. Energy Environ Sci, 2015, 8(10): 2954-2962. [29] 王照民, 易政, 钟鸣, 等. 锂离子电池Sb基负极材料研究进展[J]. 应用化学,2018, 35(7):745-755. WANG Z M, YI Z, ZHONG M, et al. Research progress of Sb based anode materials for lithium Ion batteries[J]. Chinese J Appl Chem, 2018,35(7): 745-755. [30] 张英杰, 张举峰, 段建国, 等. 钠离子电池Sb基负极材料的研究进展[J]. 材料导报, 2020, 34(11): 11106-11113. ZHANG Y J, ZHANG J F, DUAN J G, et al. Research progress of Sb based anode materials for sodium ion batteries[J]. Materials Reports, 2020,34 (11): 11106-11113 [31] LIU Q, FAN L, CHEN S, et al. Antimony-graphite composites for a high-performance potassium-ion battery[J]. Energy Technol, 2019, 7(10): 1900634. [32] KO Y N, CHOI S H, KIM H, et al. One-pot formation of Sb-carbon microspheres with graphene sheets:potassium-ion storage properties and discharge mechanisms[J]. ACS Appl Mater Interfaces, 2019, 11(31): 27973-27981. [33] YANG X, ZHANG R. High-capacity graphene-confined antimony nanoparticles as a promising anode material for potassium-ion batteries[J]. J Alloys Compd, 2020: 155191. [34] CHENG N, ZHAO J, FAN L, et al. Sb-MOFs derived Sb nanoparticles@porous carbon for high performance potassium-ion batteries anode[J]. Chem Commun, 2019, 55(83): 12511-12514. [35] WANG H, WU X, QI X, et al. Sb nanoparticles encapsulated in 3D porous carbon as anode material for lithium-ion and potassium-ion batteries[J]. Mater Res Bull, 2018, 103: 32-37. [36] HAN C, HAN K, WANG X, et al. Three-dimensional carbon network confined antimony nanoparticle anodes for high-capacity K-ion batteries[J]. Nanoscale, 2018, 10(15): 6820-6826. [37] ZHENG J, YANG Y, FAN X, et al. Extremely Stable antimony carbon composite anodes for potassium-ion batteries[J]. Energy Environ Sci, 2019, 12(2): 615-623. [38] LIU D, YANG L, CHEN Z, et al. Ultra-stable Sb confined into N-doped carbon fibers anodes for high-performance potassium-ion batteries[J]. Sci Bull, 2020, 65(12): 1003-1012.. [39] GUO S, LI H, LU Y, et al. Lattice softening enables highly reversible sodium storage in anti-pulverization Bi-Sb alloy/carbon nanofibers[J]. Energy Storage Mater, 2020, 27: 270-278. [40] GABAUDAN V, BERTHELOT R, SOUGRATI M T, et al. SnSb vs. Sn: improving the performance of Sn-based anodes for K-ion batteries by synergetic alloying with Sb[J]. J Mater Chem A, 2019, 7(25): 15262-15270. [41] WANG Z, DONG K, WANG D, et al. A nanosized SnSb alloy confined in N-doped 3D porous carbon coupled with ether-based electrolytes toward high-performance potassium-ion batteries[J]. J Mater Chem A, 2019, 7(23): 14309-14318. [42] HAN J, ZHU K, LIU P, et al. N-doped CoSb@C nanofibers as a self-supporting anode for high-performance K-ion and Na-ion batteries[J]. J Mater Chem A, 2019, 7(44): 25268-25273. [43] ZHANG Y, LI M, HUANG F, et al. 3D porous Sb-Co nanocomposites as advanced anodes for sodium-ion batteries and potassium-ion batteries[J]. Appl Surf Sci, 2020, 499: 143907. |