[1] BERGER M, GRAY J A, ROTH B L. The expanded biology of serotonin[J]. Annu Rev Med, 2009, 60(1): 355-366. [2] ALI S R, MA Y, PARAJULI R R, et al. A nonoxidative sensor based on a self-doped polyaniline/carbon nanotube composite for sensitive and selective detection of the neurotransmitter dopamine[J]. Anal Chem, 2007, 79(6): 2583-2587. [3] CHEN D Z, ZHU X D, HUANG J, et al. Polydopamine@gold nanowaxberry enabling improved sers sensing of pesticides, pollutants and explosives in complex samples[J]. Anal Chem, 2018, 90(15): 9048-9054. [4] 张亮, 贺辛亥, 任研伟, 等. 静电纺纳米复合纤维柔性表面增强拉曼散射传感基底的研究进展[J]. 应用化学, 2020, 32(12): 1364-1372. ZHANG L, HE X H, REN Y W, et al. Electrospun composite nanofibers for the application of flexible substrate of surface-enhanced Raman scattering sening[J]. Chinese J Appl Chem, 2020, 32(12): 1364-1372. [5] LAING S, JAMIESON L E, FAULDS K, et al. Surface-enhanced Raman spectroscopy for in vivo biosensing[J]. Nat Rev Chem, 2017, 1: 0060. [6] CECCHINI M P, TUREK V A, PAGET J, et al. Self-assembled nanoparticle arrays for multiphase trace analyte detection[J]. Nat Mater, 2013, 12(2): 165-171. [7] ZONG C, XU M, XU L J, et al. Surface-enhanced Raman spectroscopy for bioanalysis: reliability and challenges[J]. Chem Rev, 2018, 118(10): 4946-4980. [8] CHEN D Z, SONG Z X, CHEN F, et al. Simply controllable growth of single crystal plasmonic Au-Ag nano-spines with anisotropic multiple sites for highly sensitive and uniform surface-enhanced Raman scattering sensing[J]. RSC Adv, 2016, 6 (70): 66056-66065. [9] MA C, GAO Q Q, HONG W, et al. Real-time probing nanopore-in-nanogap plasmonic coupling effect on silver supercrystals with surface-enhanced Raman spectroscopy[J]. Adv Funct Mater, 2017, 27(2): 1603233. [10] WALL M A, HARMSEN S, PAL S, et al. Surfactant-free shape control of gold nanoparticles enabled by unified theoretical framework of nanocrystal synthesis[J]. Adv Mater, 2017, 29: 1605622. [11] CHEN D Z, NING P, ZHANG Y, et al. Ta@Ag porous array with high stability and biocompatibility for SERS sensing of bacteria[J]. ACS Appl Mater Interfaces, 2020, 12(17): 20138-20144. [12] LIU Z, YANG Z, PENG B, et al. Highly sensitive, uniform, and reproducible surface-enhanced Raman spectroscopy from hollow Au-Ag alloy nanourchins[J]. Adv Mater, 2014, 26(15): 2431-2439. [13] LIU M, GUYOT P, GUYOT S P. Mechanism of silver(I)-assisted growth of gold nanorods and bipyramids[J]. J Phys Chem B, 2005, 109(47): 22192-22200. [14] LIU Z, ZHANG F, YANG Z, et al. Gold mesoparticles with precisely controlled surface topographies for single-particle surface-enhanced Raman spectroscopy[J]. J Mater Chem C, 2013, 1(35): 5567-5576. [15] MICHELY T, HOHAGE M, BOTT M, et al. Inversion of growth speed anisotropy in two dimensions[J]. Phys Rev Lett, 1993, 70(25): 3943-3946. [16] YOU H, YANG S, DING B, et al. Synthesis of colloidal metal and metal alloy nanoparticles for electrochemical energy applications[J]. Chem Soc Rev, 2013, 42(7): 2880-2904. [17] WANG P, XIA M, LIANG O, et al. Label-free SERS selective detection of dopamine and serotonin using graphene-Au nanopyramid heterostructure[J]. Anal Chem, 2015, 87(20): 10255-10261. [18] SILWAL A P, YADAV R, SPRAGUE J E. Raman spectroscopic signature markers of dopamine-human dopamine transporter interaction in living cells[J]. ACS Chem Neurosci, 2017,8(7): 1510-1518. [19] SILWAL A P, LU H P. Mode selective Raman imaging of dopamine-human dopamine transporter interaction in live cells[J]. ACS Chem Neurosci, 2018, 9(12): 3117-3127. |