应用化学 ›› 2025, Vol. 42 ›› Issue (4): 511-521.DOI: 10.19894/j.issn.1000-0518.240394
王松柏1(
), 李天宇1, 魏梦姝1, 郭炘明1, 李俊芬1, 周影1, 彭秀英2, 董川1(
)
收稿日期:2024-11-30
接受日期:2025-03-17
出版日期:2025-04-01
发布日期:2025-05-14
通讯作者:
王松柏,董川
作者简介:dc@sxu.edu.cn基金资助:
Song-Bai WANG1(
), Tian-Yu LI1, Meng-Shu WEI1, Xin-Ming GUO1, Jun-Fen LI1, Ying ZHOU1, Xiu-Ying PENG2, Chuan DONG1(
)
Received:2024-11-30
Accepted:2025-03-17
Published:2025-04-01
Online:2025-05-14
Contact:
Song-Bai WANG,Chuan DONG
Supported by:摘要:
通过加热3-氨丙基三乙氧基硅烷(APTES)、抗坏血酸钠和柠檬酸钠制备了一种硅量子点(SiQDs)。利用该SiQDs构建了一种基于静电吸附导致的荧光猝灭和紫外吸收增强双模式的高效、灵敏和便捷的绿原酸(CGA)检测方法。SiQDs具有良好的水溶性以及对CGA优异的选择性,且荧光量子产率高达0.58。在最佳工作条件下,SiQDs的荧光检测线性范围为0.054~265 μmol/L,检出限为0.018 μmol/L。 SiQDs的吸光度检测范围为0.516~45.0 μmol/L,检出限为0.172 μmol/L。 此外,运用加标回收的方法实现了对金银花中绿原酸的分析检测,表现出良好的回收率(97.76%~105.5%)。
中图分类号:
王松柏, 李天宇, 魏梦姝, 郭炘明, 李俊芬, 周影, 彭秀英, 董川. 基于硅量子点荧光法和比色法双模式检测绿原酸[J]. 应用化学, 2025, 42(4): 511-521.
Song-Bai WANG, Tian-Yu LI, Meng-Shu WEI, Xin-Ming GUO, Jun-Fen LI, Ying ZHOU, Xiu-Ying PENG, Chuan DONG. Dual Mode Detection of Chlorogenic Acid Based on Silicon Quantum Dot via Fluorescence Spectroscopy and Colorimetric Method[J]. Chinese Journal of Applied Chemistry, 2025, 42(4): 511-521.
图2 SiQDs的(A) TEM图像、(B)粒度分布直方图、(C) XRD图谱和(D) FT-IR谱图
Fig.2 (A) TEM, (B) histogram of particle size distribution, (C) XRD pattern and (D) FT-IR spectrum of SiQDs
图4 (A)不同激发波长下SiQDs的荧光发射光谱; (B) SiQDs的紫外-可见吸收光谱; (C)室温放置时间对SiQDs荧光强度的影响; (D) pH值对SiQDs荧光强度的影响; (E)激发时间对SiQDs荧光强度的影响; (F)离子强度SiQDs荧光强度的影响
Fig.4 (A) Fluorescence emission spectra of SiQDs at different excitation wavelengths; (B) UV-Vis absorption spectrum of SiQDs; (C) Effect of room temperature placement time on the fluorescence intensity of SiQDs; (D) Effect of pH on the fluorescence intensity of SiQDs; (E) Effect of excitation time on the fluorescence intensity of SiQDs; (F) Effect of ionic strength on the fluorescence intensity of SiQDs
图5 (A)反应物比例对实验结果的影响; (B)反应时间对实验结果的影响; (C)反应温度对实验结果的影响; (D)图A的折线图; (E)图B的折线图; (F)图C的折线图
Fig.5 (A) Effect of reactant ratio on experimental results; (B) Effect of reaction time on experimental results; (C) Effect of reaction temperature on experimental results; (D) Line graph of Fig.5A; (E) Line graph of Fig.5B; (F) Line graph of Fig.5C
图6 (A) SiQDs在离子干扰物Br-、 Zn2+、 Cu2+、 Fe2+、 NO2-、 Pb2+、 SO42-、 Al3+、K+和Cl-(1500 μmol/L)存在下和添加150 μmol/L CGA的荧光强度; (B) SiQDs在有机小分子干扰物Gln、L-Cys、L-Tyr、SA、AA、GSH、Met、CA、DA、Glu、Try、Glucose、Sucrose、Leu、THB、QA和CAA(1500 μmol/L)存在下和添加150 μmol/L CGA的吸光度; (C) CGA浓度在0~435 μmol/L范围内SiQDs的荧光光谱图; (D) ln (FI)和CGA浓度的线性关系图
Fig.6 (A) Fluorescence intensity of SiQDs in the presence of ionic interferences Br-, Zn2+, Cu2+, Fe2+, NO2-, Pb2+,SO42-, Al3+, K+, Cl-(1500 μmol/L) and the addition of 150 μmol/L CGA; (B) Fluorescence intensity of SiQDs in the presence of organic small molecule interferences Gln, L-Cys, L-Tyr, SA, AA, GSH, Met, CA, DA, Glu, Try, Glucose, Sucrose, Leu, THB, QA and CAA (1500 μmol/L) in the presence of 150 μmol/L CGA; (C) Fluorescence spectrograms of SiQDs with the concentration of CGA ranging from 0 to 435 μmol/L; (D) Linear relationship between ln (FI) and CGA concentration
图7 (A) SiQDs在离子干扰物Cu2+、NO2-、Zn2+、Cl-、Br-、Fe2+、Al3+、NO3-、Pb2+、K+和SO42-(500 μmol/L)存在下和添加50 μmol/L CGA的吸光度; (B) SiQDs在有机小分子干扰物L-Tyr、Glucose、Sucrose、DA、GSH、Gln、SA、Met、CA、Cys、Glu、Try、Leu、THB、QA和CAA(500 μmol/L)和添加50 μmol/L CGA的吸光度 ;(C) CGA浓度在0~1000 μmol/L范围内SiQDs的紫外图谱; (D)吸光度和CGA浓度的线性关系图
Fig.7 (A) Absorbance of SiQDs in the presence of ionic interferences Cu2+, NO2-, Zn2+, Cl-, Br-, Fe2+, Al3+, NO3-, Pb2+, K+ and SO42-(500 μmol/L) and with the addition of 50 μmol/L CGA; (B) Absorbance of SiQDs in the presence of organic small molecule interferences L-Tyr, Glucose, Sucrose, DA, GSH, Gln, SA, Met, CA, Cys, Glu, Try, Leu, THB, QA, CAA (500 μmol/L) and the addition of 50 μmol/L CGA; (C) UV profiles of SiQDs in the range of 0~1000 μmol/L for the concentration of CGA; (D) Linear plots of the absorbance and the concentration of CGA
| Detection method | Material | Linear range/(μmol·L-1) | LOD of CGA/(μmol·L-1) | Ref. |
|---|---|---|---|---|
| Electrochemistry | TAPB-DMTP-COFS/AuNPs/GCE | 0.010~40 | 0.009 5 | [ |
| BDD | 5.64~147.0 | 1.260 | [ | |
| MIS/Au/GCE | 0.50~14 | 0.148 | [ | |
| PASA/GCE | 0.40~12 | 0.040 | [ | |
| Fluorescence | CDs | 0.15~60 | 0.045 | [ |
| CDs | 0.10~220 | 0.030 | [ | |
| CDs | 1.53~80 | 0.460 | [ | |
| SiQDs | 0.054~265 | 0.018 | This work | |
| Colorimetry | Probe | 11.3~113 | 0.475 | [ |
| SiQDs | 0.516~45 | 0.172 | This work |
表1 该方法与其他CGA检测方法比较
Table 1 Comparison of this method with other CGA detection methods
| Detection method | Material | Linear range/(μmol·L-1) | LOD of CGA/(μmol·L-1) | Ref. |
|---|---|---|---|---|
| Electrochemistry | TAPB-DMTP-COFS/AuNPs/GCE | 0.010~40 | 0.009 5 | [ |
| BDD | 5.64~147.0 | 1.260 | [ | |
| MIS/Au/GCE | 0.50~14 | 0.148 | [ | |
| PASA/GCE | 0.40~12 | 0.040 | [ | |
| Fluorescence | CDs | 0.15~60 | 0.045 | [ |
| CDs | 0.10~220 | 0.030 | [ | |
| CDs | 1.53~80 | 0.460 | [ | |
| SiQDs | 0.054~265 | 0.018 | This work | |
| Colorimetry | Probe | 11.3~113 | 0.475 | [ |
| SiQDs | 0.516~45 | 0.172 | This work |
图8 (A) SiQDs(τ0)和SiQDs+CGA(τ)的荧光衰减曲线; (B) SiQDs(1 mg/mL)、APTES(0.06 mol/L)、CGA(0.01 mol/L)、SiQDs+CGA和APTES+CGA的Zeta电位; (C) SiQDs加入CGA的TEM图像(插图: 粒径的频率分布直方图); (D) SiQDs(1 mg/mL)、CGA(0.01 mol/L)和SiQDs+CGA的紫外-可见吸收光谱
Fig.6 (A) Fluorescence decay curves of SiQDs (τ0) and SiQDs+CGA (τ); (B) Zeta potentials of SiQDs (1 mg/mL), APTES (0.06 mol/L), CGA (0.01 mol/L), and SiQDs+CGA and APTES+CGA; (C) TEM images of SiQDs incorporated into CGA (inset: histogram of frequency distribution of particle sizes); (D) UV-Vis absorption spectra of SiQDs (1 mg/mL), CGA (0.01 mol/L), and SiQDs+CGA
| Samples | Found/(μmol·L-1) | Add/(μmol·L-1) | Total found/(μmol·L-1) | Recovery/% | Average recovery/% | RSD/% |
|---|---|---|---|---|---|---|
| Lonicera japonica Thunb. | 0.82 | 89.29 | 89.23 | 99.02 | 98.55 | 0.56 |
| 0.85 | 89.29 | 88.12 | 97.76 | |||
| 0.83 | 89.29 | 89.10 | 98.87 | |||
| 8.97 | 44.44 | 54.70 | 102.4 | 102.8 | 1.96 | |
| 9.01 | 44.44 | 56.28 | 105.5 | |||
| 8.91 | 44.44 | 53.68 | 100.6 | |||
| 27.09 | 17.67 | 46.48 | 103.8 | 102.9 | 2.18 | |
| 26.12 | 17.67 | 43.69 | 99.77 | |||
| 25.66 | 17.67 | 45.51 | 105.0 |
表2 金银花中CGA的测定(n=3)
Table 2 Determination of CGA in Lonicera japonica Thunb.
| Samples | Found/(μmol·L-1) | Add/(μmol·L-1) | Total found/(μmol·L-1) | Recovery/% | Average recovery/% | RSD/% |
|---|---|---|---|---|---|---|
| Lonicera japonica Thunb. | 0.82 | 89.29 | 89.23 | 99.02 | 98.55 | 0.56 |
| 0.85 | 89.29 | 88.12 | 97.76 | |||
| 0.83 | 89.29 | 89.10 | 98.87 | |||
| 8.97 | 44.44 | 54.70 | 102.4 | 102.8 | 1.96 | |
| 9.01 | 44.44 | 56.28 | 105.5 | |||
| 8.91 | 44.44 | 53.68 | 100.6 | |||
| 27.09 | 17.67 | 46.48 | 103.8 | 102.9 | 2.18 | |
| 26.12 | 17.67 | 43.69 | 99.77 | |||
| 25.66 | 17.67 | 45.51 | 105.0 |
| 1 | NAVEED M, BIBI J, KAMBOH A A, et al. Pharmacological values and therapeutic properties of black tea (Camellia sinensis): a comprehensive overview[J]. Biomed Pharmacother, 2018, 100: 521-531. |
| 2 | MARQUES V, FARAH A. Chlorogenic acids and related compounds in medicinal plants and infusions[J]. Food Chem, 2009, 113(4): 1370-1376. |
| 3 | TOŠOVIĆ J, MARKOVIĆ S, DIMITRIĆ MARKOVIĆ J M, et al. Antioxidative mechanisms in chlorogenic acid[J]. Food Chem, 2017, 237: 390-398. |
| 4 | GASTÉLUM-ESTRADA A, RABADÁN-CHÁVEZ G, REZA-ZALDÍVAR E E, et al. Biofortified beverage with chlorogenic acid from stressed carrots: anti-obesogenic, antioxidant, and anti-inflammatory properties[J]. Foods, 2023, 12(21): 3959. |
| 5 | HUANG J, XIE M, HE L, et al. Chlorogenic acid: a review on its mechanisms of anti-inflammation, disease treatment, and related delivery systems[J]. Front Pharmacol, 2023, 14: 1218015. |
| 6 | SOCAŁA K, SZOPA A, SEREFKO A, et al. Neuroprotective effects of coffee bioactive compounds: a review[J]. Int J Mol Sci, 2020, 22(1): 107. |
| 7 | 李淑芳, 郝学飞, 王红旗, 等. 基于超高效液相色谱联用高分辨质谱自动解析方法的金银花不同加工方式分析[J]. 应用化学, 2022, 39(5): 819-827. |
| LI S F, HAO X F, WANG H Q, et al. Automatic data analysis strategy coupled with Q exactive high resolution mass spectrometry for studying different industrial process of Lonicerae Japonicae Flos[J]. Chin J Appl Chem, 2022, 39(5): 819-827. | |
| 8 | YUAN W, HAN X, SHI G, et al. Machine learning-driven multi-level composite SERS platform for trace detection of chlorogenic acid as pharmacodynamic substance in honeysuckle[J]. Opt Laser Technol, 2024, 169: 109911. |
| 9 | GONZÁLEZ-JIMÉNEZ F E, SALAZAR-MONTOYA J A, CALVA-CALVA G, et al. Phytochemical characterization, in vitro antioxidant activity, and quantitative analysis by micellar electrokinetic chromatography of hawthorn (crataegus pubescens) fruit[J]. J Food Qual, 2018, 2018: 1-11. |
| 10 | CRUPI P, BLEVE G, TUFARIELLO M, et al. Comprehensive identification and quantification of chlorogenic acids in sweet cherry by tandem mass spectrometry techniques[J]. J Food Compos Anal, 2018, 73: 103-111. |
| 11 | LEBOT V, MICHALET S, LEGENDRE L. Identification and quantification of phenolic compounds responsible for the antioxidant activity of sweet potatoes with different flesh colours using high performance thin layer chromatography (HPTLC)[J]. J Food Compos Anal, 2016, 49: 94-101. |
| 12 | WANG J, PAN S, SUN W, et al. Ingenious microenvironment regulation of a metal-organic framework (MOF) nanoreactor for electrochemical detection of chlorogenic acid[J]. New J Chem, 2024, 48(4): 1792-1799. |
| 13 | LIU Q, DONG Z, HAO A, et al. Synthesis of highly fluorescent carbon dots as a dual-excitation rationmetric fluorescent probe for the fast detection of chlorogenic acid[J]. Talanta, 2021, 221: 121372. |
| 14 | GUTIÉRREZ-ORTIZ A L, VIDA V, PETERKA M, et al. Fluorescent imprinted nanoparticles for sensing of chlorogenic acid in coffee extracts[J]. Sensors, 2022, 22(24): 9874. |
| 15 | GELLOZ B, JUANGSA F B, NOZAKI T, et al. Si/SiO2 core/shell luminescent silicon nanocrystals and porous silicon powders with high quantum yield, long lifetime, and good stability[J]. Front Phys, 2019, 7: 47. |
| 16 | SRIVASTAVA P K, HAN S, TU C C, et al. Phototoxicity generated by silicon quantum dot nanoparticles on zebrafish embryos[J]. ACS Appl Bio Mater, 2019, 2(7): 2872-2878. |
| 17 | CHIAPPINI C, DE ROSA E, MARTINEZ J O, et al. Biodegradable silicon nanoneedles delivering nucleic acids intracellularly induce localized in vivo neovascularization[J]. Nat Mater, 2015, 14(5): 532-539. |
| 18 | ZHANG H, WANG H, YANG H, et al. Luminescent, protein-binding and imaging properties of hyper-stable water-soluble silicon quantum dots[J]. J Mol Liq, 2021, 331: 115769. |
| 19 | LIU F, LIN J, LUO Y, et al. Sialic acid-targeting multi-functionalized silicon quantum dots for synergistic photodynamic and photothermal cancer therapy[J]. Biomater Sci, 2023, 11(11): 4009-4021. |
| 20 | LIU Y, WANG Q, GUO S, et al. Highly selective and sensitive fluorescence detection of hydroquinone using novel silicon quantum dots[J]. Sens Actuators B:Chem, 2018, 275: 415-421. |
| 21 | SULLAM E M, ADAM K M, LIU J, et al. Silicon quantum dots-based fluorescent sensor for the detection of cobalt with high sensitivity and selectivity[J]. Chin Chem Lett, 2024, 35(1): 108476. |
| 22 | LIU Y, CAO L, ZAN M, et al. Cyan-emitting silicon quantum dots as a fluorescent probe directly used for highly sensitive and selective detection of chlorogenic acid[J]. Talanta, 2021, 233: 122465. |
| 23 | DI S, STEVEN W, PEREMY J M, et al. Streamlined synthesis of potential dual-emissive fluorescent silicon quantum dots (SiQDs) for cell imaging[J]. RSC Adv, 2023, 13(38): 26392-26405. |
| 24 | PAN C J, DENG X X, LU M C, et al. Preparation of bright blue fluorescent carbon dots and their application in highly sensitive chlorogenic acid detection[J]. Chin J Anal Chem, 2023, 51(12):100334. |
| 25 | YANG H, YANG L, YUAN Y, et al. A portable synthesis of water-soluble carbon dots for highly sensitive and selective detection of chlorogenic acid based on inner filter effect[J]. Spectrochim Acta A, 2018, 189: 139-146. |
| 26 | ZHANG T, CHEN Y, HUANG W, et al. A novel AuNPs-doped COFs composite as electrochemical probe for chlorogenic acid detection with enhanced sensitivity and stability[J]. Sens Actuators B:Chem, 2018, 276: 362-369. |
| 27 | YARDIM Y, KESKIN E, ŞENTÜRK Z. Voltammetric determination of mixtures of caffeine and chlorogenic acid in beverage samples using a boron-doped diamond electrode[J]. Talanta, 2013, 116: 1010-1017. |
| 28 | SANTOS W D J R, SANTHIAGO M, YOSHIDA I V P, et al. Novel electrochemical sensor for the selective recognition of chlorogenic acid[J]. Anal Chim Acta, 2011, 695(12): 44-50. |
| 29 | CHAO M, MA X. Voltammetric determination of chlorogenic acid in pharmaceutical products using poly(aminosulfonic acid) modified glassy carbon electrode[J]. J Food Drug Anal, 2014, 22(4): 512-519. |
| 30 | ZHU H, LI H, SHUANG P, et al. Hydrothermal synthesis of carbon dots and their application for detection of chlorogenic acid[J]. Luminescence, 2020, 35(7): 989-997. |
| 31 | CUFFARO D, PALLADINO P, DIGIACOMO M, et al. Fast, sensitive, and sustainable colorimetric detection of chlorogenic acid in artichoke waste material[J]. Food Chem, 2025, 463: 141505. |
| [1] | 李玲, 唐俐婷, 杨君洁, 闫力强, 李建平. 有机小分子荧光探针对肼检测的研究进展[J]. 应用化学, 2025, 42(4): 453-465. |
| [2] | 肖巨颖, 赵霞, 林园, 苏朝晖. 功能型聚乙二醇化壳聚糖纳米颗粒的制备和表征[J]. 应用化学, 2025, 42(3): 386-395. |
| [3] | 高长江, 黄鑫, 田亚洋, 余海峰, 王小波. 一种近红外快速响应型硫化氢荧光探针的合成及细胞成像[J]. 应用化学, 2025, 42(2): 192-200. |
| [4] | 铁德金, 许美佳, 唐晓丹, 贾宏敏, 于洪梅. 一种可用于检测pH和H2O的双比率荧光探针[J]. 应用化学, 2024, 41(10): 1491-1501. |
| [5] | 赵永梅, 程沛璇, 谢京娇, 罗稳. 基于激发态分子内质子转移机制的3-羟基黄酮探针用于检测生物硫醇[J]. 应用化学, 2024, 41(10): 1502-1510. |
| [6] | 赵欣雨, 秦作佳, 张晓兵, 袁林. 近红外二区激活型小分子荧光探针研究进展[J]. 应用化学, 2024, 41(1): 39-59. |
| [7] | 于盼, 王光辉, 郭建花, 郭峤志, 董川. 黄色荧光碳点用于盐酸金霉素的检测[J]. 应用化学, 2023, 40(7): 1017-1023. |
| [8] | 于红丽, 周思仪, 洪琛, 罗稳. 基于黄酮骨架的“关-开”型荧光探针用于检测活细胞内丁酰胆碱酯酶[J]. 应用化学, 2023, 40(4): 500-508. |
| [9] | 耿佳美, 马素芳, 刘文, 刁海鹏, 武志芳, 李思进. 肝靶向荧光探针用于HepG2细胞中ONOO-的特异性检测[J]. 应用化学, 2023, 40(3): 441-448. |
| [10] | 林楠煜, 高峰, 曲江英, 涂晶晶, 钟伟军, 臧云浩. 超亲水/水下疏油高硅布的制备及其油水分离性能[J]. 应用化学, 2023, 40(3): 449-459. |
| [11] | 周叶红, 张旭艺, 芦冬涛, 徐会文, 刘洋, 董川. 基于氮化碳量子点/罗丹明B系统检测汞离子的比率荧光探针[J]. 应用化学, 2023, 40(11): 1550-1557. |
| [12] | 薛松松, 解正峰, 何佳伟, 张天怡, 夏保平, 李雨芹. 高选择性快速识别汞(Ⅱ)离子的磺酰腙型探针的合成及在吸附中的应用[J]. 应用化学, 2022, 39(5): 760-768. |
| [13] | 黄蕊, 叶长青, 李亚军, 邱盟峯, 李达谅, 鲍红丽. 线粒体靶向的近红外HClO/ClO-荧光探针的研究进展[J]. 应用化学, 2022, 39(3): 407-424. |
| [14] | 张成路, 王一鸣, 任芷漩, 李露, 李雨晴, 宋府璐. 以苯并咪唑萘酰亚胺为荧光团高选择快速检测H2S的荧光探针[J]. 应用化学, 2022, 39(3): 489-497. |
| [15] | 于思为, 王良鹏, 金日哲, 康传清. 氧杂蒽类荧光探针对ClO-的识别和细胞成像应用[J]. 应用化学, 2022, 39(12): 1903-1911. |
| 阅读次数 | ||||||
|
全文 |
|
|||||
|
摘要 |
|
|||||