应用化学 ›› 2025, Vol. 42 ›› Issue (4): 453-465.DOI: 10.19894/j.issn.1000-0518.240328
• 综合评述 •
李玲1, 唐俐婷2, 杨君洁2, 闫力强1,2(
), 李建平1,2(
)
收稿日期:2024-10-19
接受日期:2025-02-24
出版日期:2025-04-01
发布日期:2025-05-14
通讯作者:
闫力强,李建平
作者简介:likianping@glut.edu.cn基金资助:
Ling LI1, Li-Ting TANG2, Jun-Jie YANG2, Li-Qiang YAN1,2(
), Jian-Ping LI1,2(
)
Received:2024-10-19
Accepted:2025-02-24
Published:2025-04-01
Online:2025-05-14
Contact:
Li-Qiang YAN,Jian-Ping LI
Supported by:摘要:
肼是一种重要的化学原料,在化工生产中有着重要的应用。 然而,肼具有很高的毒性和良好的水溶性,其广泛使用和泄露会给人类健康和环境安全带来潜在的风险。 因此,有效监测生物和环境样品中的肼具有重要的意义。 有机小分子荧光探针具有灵敏度高、选择性好和响应时间短的特点,能够实现各种复杂样品中目标物质的有效、便捷和可视化检测,在肼的便捷检测方面具有良好的应用前景。 近2年,用于肼检测的有机小分子荧光探针取得了显著进步。 以肼探针的化学反应机理为基础,重点综述了2023年以来肼探针的最新研究成果; 通过对其设计策略、检测性能和应用范围进行对比分析,总结了肼探针已经表现出的优异性能,指出其仍然存在的问题和挑战,展望并预测了未来的发展趋势。
中图分类号:
李玲, 唐俐婷, 杨君洁, 闫力强, 李建平. 有机小分子荧光探针对肼检测的研究进展[J]. 应用化学, 2025, 42(4): 453-465.
Ling LI, Li-Ting TANG, Jun-Jie YANG, Li-Qiang YAN, Jian-Ping LI. Recent Advances in Small-Molecule Organic Fluorescent Probes for Hydrazine[J]. Chinese Journal of Applied Chemistry, 2025, 42(4): 453-465.
| 1 | WANG E, MA H, LU J, et al. Recent progress in the fluorescent probes for hydrazine detection[J]. Tetrahedron, 2022, 124: 132989. |
| 2 | NGUYEN K H, HAO Y, CHEN W, et al. Recent progress in the development of fluorescent probes for hydrazine[J]. Luminescence, 2018, 33(5): 816-836. |
| 3 | YAN L, ZHANG S, XIE Y, et al. Recent progress in the development of fluorescent probes for the detection of hydrazine (N2H4)[J]. Crit Rev Anal Chem, 2022, 52(1): 210-229. |
| 4 | CHEN X, XIANG Y, LI Z, et al. Sensitive and selective fluorescence determination of trace hydrazine in aqueous solution utilizing 5-chlorosalicylaldehyde[J]. Anal Chim Acta, 2008, 625: 41-46. |
| 5 | WANG E, MA H, LU J, et al. Recent progress in the fluorescent probes for hydrazine detection[J]. Tetrahedron, 2022, 124: 132989, |
| 6 | ROY B, BANDYOPADHYAY S. The design strategies and mechanisms of fluorogenic and chromogenic probes for the detection of hydrazine[J]. Anal Methods, 2018, 10: 1117-1139. |
| 7 | HAN Y, HUANG Y, LIN Q, et al. Bifunctional fluorescent probe for the recognition of hydrazine and bisulfite in lipid droplets[J]. Sens Actuators B: Chem, 2023, 393:134181. |
| 8 | WEN Z, LENG Y, LI Q, et al. A highly sensitive turn-on fluorescent sensor for hydrazine based on conjugated D-π-A molecule[J]. Tetrahedron Lett, 2023, 117: 154371. |
| 9 | TAN H, WANG Z, YANG X, et al. Development of a ratiometric fluorescent probe based on caffeic acid for hydrazine detection and its applications in water samples and living cells[J]. Spectrochim Acta A, 2025, 326: 125191. |
| 10 | STANTOS C O, PASSOS S T A, SORTO J E P, et al. Sensitive hydrazine detection and quantification with a fluorescent benzothiadiazole sensor: selective lipid droplets and in vivo imaging[J]. Org Biomol Chem, 2023, 21: 4606-4619. |
| 11 | SHENG X, SUN X, ZHANG Y, et al. A ratiometric fluorescent probe for N2H4 having a large detection range based upon coumarin with multiple applications[J]. Molecules, 2023, 28: 7629. |
| 12 | CAO B, LI H, WU Z, et al. A near-infrared fluorescent off-on probe with large Stokes shift for sensing hydrazine in vitro and in vivo[J]. Tetrahedron, 2023, 147: 133665. |
| 13 | PANG S, AN B, MIAO Z, et al. A near-infrared fluorescent probe for detecting hydrazine metabolized from isoniazid in living cells[J]. Luminescence, 2024, 39: e4676. |
| 14 | LUO L, CHENG J, CHEN S, et al. A near-infrared ratiometric fluorescent probe for hydrazine and its application for gaseous sensing and cell imaging[J]. Spectrochim Acta A, 2023, 296: 122692. |
| 15 | FENG J, DUAN N, YANG S, et al. A colorimetric probe for the detection of hydrazine and its application[J]. Anal Sci, 2024, 40: 439-444. |
| 16 | TONG C, FAN L, CAI G, et al. Design of a sustainable light-up flavonol probe for dual-ratiometric fluorescent sensing and visual differentiating ammonia and hydrazine[J]. Food Chem, 2023, 421: 136216. |
| 17 | LV L, LUO W, ZHOU Y, et al. A highly sensitive ratiometric fluorescent probe based on fluorescein coumarin for detecting hydrazine in actual water and biological samples[J]. Luminescence, 2023, 38: 159-165. |
| 18 | SHI Y, HUO F, YIN C. A nucleophilic addition-elimination based ratiometric fluorescent probe for monitoring N2H4 in biological systems and actual samples[J]. Analyst, 2023, 148: 3491-3497. |
| 19 | SONG Q, WANG N, WANG F, et al. A highly selective NIR ratiometric fluorescent probe for in situ detection of metabolized hydrazine in living cells[J]. Sens Actuator B: Chem, 2023, 393: 134164. |
| 20 | XIAO W, ZHANG Q, YOU D H, et al. Myricetin-based fluorescence probes with AIE and ESIPT properties for detection of hydrazine in the environment and fingerprinting[J]. Anal Chim Acta, 2024, 1288: 342173. |
| 21 | LI Y, ZHONG X, ZHAO Z, et al. Synthesis and application of a novel fluorescent probe based on benzothiazole for detection of hydrazine in real samples[J]. Int J Environ Anal Chem, 2024, DOI:10.1080/03067319.2024.2351193. [published online ahead of print]. |
| 22 | RUAN M, ZHANG B, WANG J, et al. A resorufin-based fluorescent probe for hydrazine detection and its application in environmental analysis and bioimaging[J]. Anal Methods, 2023, 15: 6412-6416. |
| 23 | LALITHA R, WU S P, VELMATHI S. Two benzocoumarin-based hydrazine chemodosimeters and their application in monitoring trace levels of hydrazine in soil, water, and urine samples[J]. J Photochem Photobiol A, Chem, 2023, 442: 114795. |
| 24 | CAO T, MA H, ZHENG L, et al. A ratiometric fluorescent probe for hydrazine imaging in biological and environmental samples[J]. Chin J Anal Chem, 2023, 51(8): 100293. |
| 25 | KANG J, AN J M, SEO E W, et al. Single-benzene-based ratiometric fluorescent probe for hydrazine visualization[J]. Dyes Pigm, 2023, 218: 111487. |
| 26 | SHAN X, WU S, SHEN L, et al. Ratiometric red aggregation-induced emission luminogens for hydrazine hydrate detection[J]. Dyes Pigm, 2023, 219: 111609. |
| 27 | PANDEY D, IMRAN K, YADAV R K, et al. Push-pull intramolecular charge transfer solvatofluorochromic fluorophore for the selective and real-time detection of hydrazine[J]. Microchem J, 2023, 191: 108912. |
| 28 | ZHANG Y P, YANG X, YANG F, et al. Pyrazole probes for the detection of N2H4 with ICT properties in live cells and soils[J]. J Mol Struct, 2024, 1312: 138498. |
| 29 | YASHWANTRAO G, TRIPATHI A, SETH S, et al. Designing novel benzofuran derived AIE-probes: dual-mode fluorescence turn-off and naked-eye color change for hydrazine detection[J]. New J Chem, 2024, 48: 14586-14594. |
| 30 | JIANG T, LUAN N, WANG L, et al. Theoretical insights on the sensing performance for newly synthesized two photon fluorescent N2H4 probes based on spirobifluorence[J]. J Fluoresc, 2023, 33: 1949-1959. |
| 31 | JIN Y, SUN R, LI G, et al. Water-soluble single molecular probe for simultaneous detection of viscosity and hydrazine[J]. Spectrochim Acta A, 2023, 294: 122558. |
| 32 | BHOSLE A A, BANERJEE M, SAHA S, et al. An NIR-emissive AIEgen with dual sensing ability: an azine-based chemodosimeter for discriminative ppb-level detection of hydrazine and bisulfite ions[J]. Sens Actuators B: Chem, 2023, 397: 134661. |
| 33 | CHEN L, LV B, WANG Z, et al. A novel ratiometric NIR fluorescent probe based on tanshinone ⅡA with double excitation for the detection of hydrazine[J]. Dyes Pigm, 2023, 220: 111680. |
| 34 | CHEN Y, ZHAO C, LIU X, et al. Multi-scene visual hydrazine hydrate detection based on a dibenzothiazole derivative[J]. Analyst, 2023, 148: 856-862. |
| 35 | XU C, ZHANG Y, REN M, et al. Near-infrared dual-response fluorescent probe for detection of N2H4 and intracellular viscosity changes in biological samples and various water samples[J]. Spectrochim Acta A, 2024, 314: 124180. |
| 36 | ZHANG Y, XU C, SUN H, et al. A turn-on fluorescent probe for sensing N2H4 in living cells, zebrafishes and plant root with a large turn-on fluorescence signal[J]. Talanta, 2023, 265: 124902. |
| 37 | LUO Z, YUAN C, LI Z, et al. A novel coumarin-naphthalimide-based ratiometric fluorescent probe for efficiently monitoring of hydrazine in environmental water[J]. Luminescence, 2024, 39: e4908. |
| 38 | YANG Y S, ZHANG Z, ZHANG Y P, et al. Synthesis and application of specific N2H4 fluorescent probes with AIE effect based on pyrazole structure[J]. J Fluoresc, 2024, DOI: 10.1007/s10895-024-03695-9. [published online ahead of print]. |
| 39 | SUN X, JIANG X, WANG Z, et al. Fluorescent probe for imaging N2H4 in plants, food, and living cells and for quantitative detection of N2H4 in soil and water using a smartphone[J]. J Hazard Mater, 2024, 479: 135701. |
| 40 | ZHANG C L, LIU C, NIE S R, et al. A novel near-infrared fluorescence probe for detecting N2H4 and its application in natural environment and biological system[J]. Dyes Pigm, 2024, 224: 111966. |
| 41 | LV B, WANG Z, WU Y, et al. A novel dual-responsive colorimetric/fluorescent probe for the detection of N2H4 and ClO- and its application in environmental analysis and bioimaging [J]. J Hazard Mater, 2024, 469: 134105. |
| 42 | GONG Q, LAI Y, LIN W L. A dual-color ESIPT-based probe for simultaneous detection of hydrogen sulfide and hydrazine[J] J Mater Chem B, 2024, 12: 5150-5156. |
| 43 | LU G, YU S, MENG S, et al. Synthesis and applications of a corrole-based dual-responsive fluorescent probe for separate detection of hydrazine and hydrogen sulfide[J]. Spectrochim Acta A, 2023, 296: 122678. |
| 44 | LIU S S, WU W N, ZHAO X L, et al. A dual-emission fluorescence probe for the detection of viscosity and hydrazine in environmental and biological samples[J]. Anal Chim Acta, 2023, 1245: 340867. |
| 45 | RAJALASHMI K, MUTHUSAMY S, LEE H J, et al. Dual-channel fluorescent probe for discriminative detection of H2S and N2H4: exploring sensing mechanism and real-time applications[J]. J Hazard Mater, 2024, 465: 133036. |
| 46 | PAN Y, TANG L, LI L, et al. A versatile fluorescent probe for the ratiometric detection of hydrazine (N2H4) in water, soil, plant, and food samples[J]. Environ Pollut, 2024, 359: 124766. |
| 47 | ERDEMIR S, MALKONDU S, OGUZ M, et al. A novel pathway for ratiometric hydrazine sensing in environmental samples and the detection of intracellular viscosity by a mitochondria-targeted fluorescent sensor[J]. Talanta, 2024, 267: 125143. |
| 48 | ERDEMIR S, MALKONDU S, OGUZ M. Fast, visual, and quantitative monitoring of N2H4 by two ratiometric fluorescent probes in environmental media and biological systems[J]. Chem Eng J, 2023, 468: 143767. |
| 49 | YANG G, LI Y, HE L, et al. Continuous and precise recognition of N2H4 and Cu2+ has been achieved using chalcone derivatives as a D-A-D′-type fluorescent chemical sensor[J]. Microchem J, 2024, 198: 110044. |
| 50 | 端宁, 丁乐媛, 邓兵, 等. 检测铁离子和肼的双功能荧光探针的合成与应用[J]. 分析化学, 2024, 52(6): 809-827. |
| DUAN N, DING L Y, DENG B, et al. Synthesis of a dual-function fluorescent probe for detection of ferric ions and hydrazine[J]. Chin J Anal Chem, 2024, 52(6): 809-827. | |
| 51 | ZHOU G, MA P, YANG C, et al. A fluorescent probe based on modulation of ESIPT signaling for the highly selective detection of N2H4 and cell-imaging[J]. Spectrochim Acta A, 2023, 303: 123233. |
| [1] | 肖巨颖, 赵霞, 林园, 苏朝晖. 功能型聚乙二醇化壳聚糖纳米颗粒的制备和表征[J]. 应用化学, 2025, 42(3): 386-395. |
| [2] | 高长江, 黄鑫, 田亚洋, 余海峰, 王小波. 一种近红外快速响应型硫化氢荧光探针的合成及细胞成像[J]. 应用化学, 2025, 42(2): 192-200. |
| [3] | 铁德金, 许美佳, 唐晓丹, 贾宏敏, 于洪梅. 一种可用于检测pH和H2O的双比率荧光探针[J]. 应用化学, 2024, 41(10): 1491-1501. |
| [4] | 赵永梅, 程沛璇, 谢京娇, 罗稳. 基于激发态分子内质子转移机制的3-羟基黄酮探针用于检测生物硫醇[J]. 应用化学, 2024, 41(10): 1502-1510. |
| [5] | 赵欣雨, 秦作佳, 张晓兵, 袁林. 近红外二区激活型小分子荧光探针研究进展[J]. 应用化学, 2024, 41(1): 39-59. |
| [6] | 于盼, 王光辉, 郭建花, 郭峤志, 董川. 黄色荧光碳点用于盐酸金霉素的检测[J]. 应用化学, 2023, 40(7): 1017-1023. |
| [7] | 于红丽, 周思仪, 洪琛, 罗稳. 基于黄酮骨架的“关-开”型荧光探针用于检测活细胞内丁酰胆碱酯酶[J]. 应用化学, 2023, 40(4): 500-508. |
| [8] | 耿佳美, 马素芳, 刘文, 刁海鹏, 武志芳, 李思进. 肝靶向荧光探针用于HepG2细胞中ONOO-的特异性检测[J]. 应用化学, 2023, 40(3): 441-448. |
| [9] | 周叶红, 张旭艺, 芦冬涛, 徐会文, 刘洋, 董川. 基于氮化碳量子点/罗丹明B系统检测汞离子的比率荧光探针[J]. 应用化学, 2023, 40(11): 1550-1557. |
| [10] | 薛松松, 解正峰, 何佳伟, 张天怡, 夏保平, 李雨芹. 高选择性快速识别汞(Ⅱ)离子的磺酰腙型探针的合成及在吸附中的应用[J]. 应用化学, 2022, 39(5): 760-768. |
| [11] | 黄蕊, 叶长青, 李亚军, 邱盟峯, 李达谅, 鲍红丽. 线粒体靶向的近红外HClO/ClO-荧光探针的研究进展[J]. 应用化学, 2022, 39(3): 407-424. |
| [12] | 张成路, 王一鸣, 任芷漩, 李露, 李雨晴, 宋府璐. 以苯并咪唑萘酰亚胺为荧光团高选择快速检测H2S的荧光探针[J]. 应用化学, 2022, 39(3): 489-497. |
| [13] | 于思为, 王良鹏, 金日哲, 康传清. 氧杂蒽类荧光探针对ClO-的识别和细胞成像应用[J]. 应用化学, 2022, 39(12): 1903-1911. |
| [14] | 陈瑶, 唐英. 柱前衍生化高效液相色谱法测定氯氮平中肼含量[J]. 应用化学, 2022, 39(02): 322-331. |
| [15] | 张成路, 暴金迪, 于丰铭, 董文静, 张洋, 宫荣庆, 张彦朋, 张璐. 以喹唑啉酮为核心高选择高灵敏识别次氯酸根离子的荧光探针的合成及应用[J]. 应用化学, 2021, 38(8): 986-994. |
| 阅读次数 | ||||||
|
全文 |
|
|||||
|
摘要 |
|
|||||