
应用化学 ›› 2025, Vol. 42 ›› Issue (3): 386-395.DOI: 10.19894/j.issn.1000-0518.240425
收稿日期:
2024-12-24
接受日期:
2025-01-21
出版日期:
2025-03-01
发布日期:
2025-04-11
通讯作者:
林园,苏朝晖
基金资助:
Ju-Ying XIAO1,2, Xia ZHAO1, Yuan LIN1(), Zhao-Hui SU1,2(
)
Received:
2024-12-24
Accepted:
2025-01-21
Published:
2025-03-01
Online:
2025-04-11
Contact:
Yuan LIN,Zhao-Hui SU
About author:
linyuan@ciac.ac.cnSupported by:
摘要:
通过酰胺化反应,将不同相对分子质量(500、1000)的双端功能化聚乙二醇(N3-PEG-COOH)引入壳聚糖(CS)分子骨架,利用三聚磷酸纳(Sodium tripolyphosphate, TPP)离子凝胶法制备了一系列具有可控粒径和表面电势的壳聚糖-聚乙二醇(CS-PEG)纳米颗粒。 结合傅里叶红外变换光谱(FT-IR)、核磁共振氢谱(1H NMR)和热重分析(TGA)表征方法证明了PEG的成功引入; 利用透射电子显微电镜(TEM)和纳米粒度电位仪表征了纳米颗粒的结构。 实验结果表明,当m(CS)∶m(TPP)=3.33∶1时,CS纳米颗粒具有优良的结构稳定性,在此基础上随着PEG接枝密度的增加,会进一步降低CS-PEG纳米颗粒的粒径和表面电势。 此外,以炔基修饰的荧光分子5-羧基荧光素-炔烃(5-FAM-alkyne)为模型,验证了功能化CS-PEG纳米颗粒末端叠氮的化学反应活性,为其进一步作为药物载体、荧光探针或其他生物活性分子的功能平台提供了可能。
中图分类号:
肖巨颖, 赵霞, 林园, 苏朝晖. 功能型聚乙二醇化壳聚糖纳米颗粒的制备和表征[J]. 应用化学, 2025, 42(3): 386-395.
Ju-Ying XIAO, Xia ZHAO, Yuan LIN, Zhao-Hui SU. Preparation and Investigation of Functional PEGylated Chitosan Nanoparticles[J]. Chinese Journal of Applied Chemistry, 2025, 42(3): 386-395.
图1 (A) CS和N3-PEG-COOH酰胺化反应; (B) TPP离子凝胶法交联制备CS-PEG纳米颗粒; (C) CS-PEG纳米颗粒与荧光分子点击化学反应
Fig.1 (A) Amidation between CS and N3-PEG-COOH; (B) Preparation of CS-PEG nanoparticles via TPP ionotropic gelation crosslinking; (C) Click chemistry reaction between CS-PEG nanoparticles and fluorescent molecules
Sample | n(CS-NH2)∶n(PEG-COOH) | GW/% | Yield/% |
---|---|---|---|
CS-PEG 51 a CS-PEG 35 a CS-PEG 21 a | 1∶1 | 51.0 | 49.6 |
5∶1 | 34.9 | 93.9 | |
10∶1 | 20.9 | 95.5 | |
CS-PEG 77 b CS-PEG 36 b CS-PEG 35 b | 1∶1 | 77.0 | 60.0 |
5∶1 | 35.5 | 70.1 | |
10∶1 | 25.3 | 81.5 |
表1 各投料比下CS-PEG的质量接枝率和产率
Table 1 GW and yield of CS-PEG at different feed ratios
Sample | n(CS-NH2)∶n(PEG-COOH) | GW/% | Yield/% |
---|---|---|---|
CS-PEG 51 a CS-PEG 35 a CS-PEG 21 a | 1∶1 | 51.0 | 49.6 |
5∶1 | 34.9 | 93.9 | |
10∶1 | 20.9 | 95.5 | |
CS-PEG 77 b CS-PEG 36 b CS-PEG 35 b | 1∶1 | 77.0 | 60.0 |
5∶1 | 35.5 | 70.1 | |
10∶1 | 25.3 | 81.5 |
图4 CS及各投料比下CS-PEG的热重分析TG (A) and DTG (B) of CS-PEG 500; TG (C) and DTG (D) of CS-PEG 1000
Fig.4 Thermogravimetric analysis of CS and CS-PEG at different feed ratios
图5 不同制备条件下CS/TPP纳米粒径及PDI的变化A. CS concentration; B. TPP concentration; C. CS to TPP mass ratio; D. pH
Fig.5 Variation in particle size and PDI of CS/TPP nanoparticles under different preparation conditions
Size/nm | PDI | ζ-potential/mV | |
---|---|---|---|
CS-PEG 51 | 95.2±17.3 | 0.30±0.08 | 6.8±1.5 |
CS-PEG 35 | 114.8±4.7 | 0.27±0.06 | 16.3±4.7 |
CS-PEG 21 | 170.9±19.1 | 0.29±0.05 | 24.8±0.6 |
CS-PEG 77 | 108.7±3.2 | 0.45±0.01 | 4.3±0.6 |
CS-PEG 36 | 116.4±5.0 | 0.55±0.09 | 6.6±0.4 |
CS-PEG 26 | 135.0±2.6 | 0.40±0.02 | 24.6±0.9 |
表 2 CS-PEG/TPP纳米颗粒的理化性质
Table.2 The physicochemical properties of CS-PEG/TPP nanoparticles
Size/nm | PDI | ζ-potential/mV | |
---|---|---|---|
CS-PEG 51 | 95.2±17.3 | 0.30±0.08 | 6.8±1.5 |
CS-PEG 35 | 114.8±4.7 | 0.27±0.06 | 16.3±4.7 |
CS-PEG 21 | 170.9±19.1 | 0.29±0.05 | 24.8±0.6 |
CS-PEG 77 | 108.7±3.2 | 0.45±0.01 | 4.3±0.6 |
CS-PEG 36 | 116.4±5.0 | 0.55±0.09 | 6.6±0.4 |
CS-PEG 26 | 135.0±2.6 | 0.40±0.02 | 24.6±0.9 |
图7 CS-PEG-FAM的(A)FT-IR、(B)荧光和(C)不同质量浓度下的荧光谱图
Fig.7 (A) FT-IR spectra, (B) fluorescence spectra and (C) fluorescence spectra at different concentrations of CS-PEG-FAM
1 | SU L, FENG Y, WEI K, et al. Carbohydrate-based macromolecular biomaterials[J]. Chem Rev, 2021, 121(18): 10950-11029. |
2 | JIANG W, PENG J, JIANG N, et al. Chitosan phytate nanoparticles: a synergistic strategy for effective dental caries prevention[J]. ACS Nano, 2024, 18(21): 135284-13537. |
3 | 高添贺, 颜丽娟, 陈明清, 等. 高负载柠檬醛抗菌复合膜的制备与性能[J]. 应用化学, 2024, 41(9): 1284-1296. |
GAO T H, YAN L J, CHEN M Q, et al. Preparation and properties of antibacterial composite films with high loading of citral[J]. Chin J Appl Chem, 2024, 41(9): 1284-1296. | |
4 | 郑怀礼, 刘薇, 孙漫梨. 具有抗菌功能的天然高分子絮凝剂研究进展[J]. 应用化学, 2024, 41(2): 177-189. |
ZHENG H L, LIU W, SUN M L. Research progress of natural polymer flocculants with antibacterial function[J]. Chin J Appl Chem, 2024, 41(2): 177-189. | |
5 | 陈玉竹, 刘思思, 张蒙蒙, 等. 基于抗菌性壳聚糖/羧甲基纤维素复合药物涂层的聚氨酯敷料[J]. 应用化学, 2023, 40(2): 252-260. |
CHEN Y Z, LIU S S, ZHANG M M, et al. Polyurethane dressing based on antibacterial chitosan/carboxymethyl cellulose composite drug coating[J]. Chin J Appl Chem, 2023, 40(2): 252-260. | |
6 | XU Y, DU Y. Effect of molecular structure of chitosan on protein delivery properties of chitosan nanoparticles[J]. Int J Pharm, 2003, 250(1): 215-226. |
7 | ZHANG X, ZHANG H, WU Z, et al. Nasal absorption enhancement of insulin using PEG-grafted chitosan nanoparticles[J]. Eur J Pharm Biopharm, 2008, 68(3): 526-534. |
8 | GARG N K, DWIVEDI P, CAMPBELL C, et al. Site specific/targeted delivery of gemcitabine through anisamide anchored chitosan/poly ethylene glycol nanoparticles: an improved understanding of lung cancer therapeutic intervention[J]. Eur J Pharm Sci, 2012, 47(5): 1006-1014. |
9 | ZHU S, QIAN F, ZHANG Y, et al. Synthesis and characterization of PEG modified N-trimethylaminoethylmethacrylate chitosan nanoparticles[J]. Eur Polym J, 2007, 43(6): 2244-2253. |
10 | DING D, PU K Y, LI K, et al. Conjugated oligoelectrolyte-polyhedral oligomeric silsesquioxane loaded pH-responsive nanoparticles for targeted fluorescence imaging of cancer cell nucleus[J]. Chem Commun, 2011, 47(35): 9837-9839. |
11 | BEACH M A, NAYANATHARA U, GAO Y, et al. Polymeric nanoparticles for drug delivery[J]. Chem Rev, 2024, 124(9): 5505-5616. |
12 | MENDES B B, CONNIOT J, AVITAL A, et al. Nanodelivery of nucleic acids[J]. Nat Rev Method Prim, 2022, 2(1): 24. |
13 | LÓPEZ-LEÓN T, CARVALHO E L S, SEIJO B, et al. Physicochemical characterization of chitosan nanoparticles: electrokinetic and stability behavior[J]. J Colloid Interface Sci, 2005, 283(2): 344-351. |
14 | DENG H, ZHANG Y, CAI X, et al. Dual-targeted graphitic cascade nanozymes for recognition and treatment of Helicobacter pylori[J]. Small, 2024, 20(14): 2306155. |
15 | ENSIGN L M, HOEN T E, MAISEL K, et al. Enhanced vaginal drug delivery through the use of hypotonic formulations that induce fluid uptake[J]. Biomaterials, 2013, 34(28): 6922-6929. |
16 | TRIPATHI R M, HAMEED P, RAO R P, et al. Biosynthesis of highly stable fluorescent selenium nanoparticles and the evaluation of their photocatalytic degradation of dye[J]. Bionanosci, 2020, 10(2): 389-396. |
17 | JU X, CHEN J, ZHOU M, et al. Combating pseudomonas aeruginosa biofilms by a chitosan-peg-peptide conjugate via changes in assembled structure[J]. ACS Appl Mater Interfaces, 2020, 12(12): 13731-13738. |
18 | FAN W, YAN W, XU Z, et al. Formation mechanism of monodisperse, low molecular weight chitosan nanoparticles by ionic gelation technique[J]. Colloid Surf B-Biointerfaces, 2012, 90: 21-27. |
19 | LANCUŠKI A, FORT S, BOSSARD F. Electrospun azido-PCL nanofibers for enhanced surface functionalization by click chemistry[J]. ACS Appl Mater Interfaces, 2012, 4(12): 6499-6504. |
20 | KHATAMI N, GUERRERO P, MARTÍN P, et al. Valorization of biological waste from insect-based food industry: assessment of chitin and chitosan potential[J]. Carbohydr Polym, 2024, 324: 121529. |
21 | BHATTARAI N, RAMAY H R, GUNN J, et al. PEG-grafted chitosan as an injectable thermosensitive hydrogel for sustained protein release[J]. J Control Release, 2005, 103(3): 609-624. |
22 | JEONG Y I, KIM D G, JANG M K, et al. Preparation and spectroscopic characterization of methoxy poly(ethylene glycol)-grafted water-soluble chitosan[J]. Carbohydr Res, 2008, 343(2): 282-289. |
23 | MUSHTAQ A, LI L, ANITHA A, et al. Characterisation of products from EDC-mediated PEG substitution of chitosan allows optimisation of reaction conditions[J]. Int J Biol Macromol, 2022, 221: 204-211. |
24 | MUÑOZ-NUÑEZ C, CUERVO-RODRÍGUEZ R, ECHEVERRÍA C A, et al. Synthesis and characterization of thiazolium chitosan derivative with enhanced antimicrobial properties and its use as component of chitosan based films[J]. Carbohydr Polym, 2023, 302: 120438. |
25 | YUE L, WANG M, KHAN I M, et al. Preparation, characterization, and antibiofilm activity of cinnamic acid conjugated hydroxypropyl chitosan derivatives[J]. Int J Biol Macromol, 2021, 189: 657-667. |
26 | QUN G, AJUN W. Effects of molecular weight, degree of acetylation and ionic strength on surface tension of chitosan in dilute solution[J]. Carbohydr Polym, 2006, 64(1): 29-36. |
27 | SORLIER P, DENUZIÈRE A, VITON C, et al. Relation between the degree of acetylation and the electrostatic properties of chitin and chitosan[J]. Biomacromolecules, 2001, 2(3): 765-772. |
28 | SHU X Z, ZHU K J. The influence of multivalent phosphate structure on the properties of ionically cross-linked chitosan films for controlled drug release[J]. Eur J Pharm Biopharm, 2002, 54(2): 235-243. |
29 | ZHANG H, OH M, ALLEN C, et al. Monodisperse chitosan nanoparticles for mucosal drug delivery[J]. Biomacromolecules, 2004, 5(6): 2461-2468. |
30 | HUANG Y, CAI Y, LAPITSKY Y. Factors affecting the stability of chitosan/tripolyphosphate micro- and nanogels: resolving the opposing findings[J]. J Mat Chem B, 2015, 3(29): 5957-5970. |
31 | HU B, PAN C, SUN Y, et al. Optimization of fabrication parameters to produce chitosan-tripolyphosphate nanoparticles for delivery of tea catechins[J]. J Agric Food Chem, 2008, 56(16): 7451-7458. |
32 | WAYS T M M, FILIPPOV S K, MAJI S, et al. Mucus-penetrating nanoparticles based on chitosan grafted with various non-ionic polymers: synthesis, structural characterisation and diffusion studies[J]. J Colloid Interface Sci, 2022, 626: 251-264. |
33 | ECHEVERRI-CUARTAS C E, GARTNER C, LAPITSKY Y. PEGylation and folate conjugation effects on the stability of chitosan-tripolyphosphate nanoparticles[J]. Int J Biol Macromol, 2020, 158: 1055-1065. |
34 | MELO M N, PEREIRA F M, ROCHA M A, et al. Immobilization and characterization of horseradish peroxidase into chitosan and chitosan/PEG nanoparticles: a comparative study[J]. Process Biochem, 2020, 98: 160-171. |
35 | SCHEEREN L E, NOGUEIRA D R, MACEDO L B, et al. PEGylated and poloxamer-modified chitosan nanoparticles incorporating a lysine-based surfactant for pH-triggered doxorubicin release[J]. Colloid Surf B-Biointerfaces, 2016, 138: 117-127. |
36 | BHATTACHARJEE S. DLS and zeta potential-what they are and what they are not?[J]. J Control Release, 2016, 235: 337-351. |
37 | FILIPPOV S K, KHUSNUTDINOV R, MURMILIUK A, et al. Dynamic light scattering and transmission electron microscopy in drug delivery: a roadmap for correct characterization of nanoparticles and interpretation of results[J]. Mater Horizons, 2023, 10(12): 5354-5370. |
38 | HE C, HU Y, YIN L, et al. Effects of particle size and surface charge on cellular uptake and biodistribution of polymeric nanoparticles[J]. Biomaterials, 2010, 31(13): 3657-3666. |
39 | QI G, WANG S, YIN Q, et al. A pH-responsive nanoplatform based on magnetic mesoporous silica nanoparticles for enhanced treatment of pancreatic cancer[J]. ACS Appl Nano Mater, 2023, 6(24): 23184-23195. |
40 | TAVASSOLI M, KHEZERLOU A, HAMISHEHKAR H, et al. An ultrasensitive aptamer-based fluorescent on/off system for trace amount evaluation of Yersinia enterocolitica in food samples[J]. Microchim Acta, 2023, 190(7): 253. |
41 | HU M, GAO H, ZHOU H, et al. Construction and properties of fluorescence imaging and targeted delivery of UIO-66-NH2 based light-responsive CO releasing material[J]. J Solid State Chem, 2023, 327: 124292. |
[1] | 高添贺, 颜丽娟, 陈明清, 东为富, 施冬健. 高负载柠檬醛抗菌复合膜的制备与性能[J]. 应用化学, 2024, 41(9): 1284-1296. |
[2] | 周学敏, 吕姝臻, 张国芳, 崔竹梅, 毕赛. 基于上转换信标探针构建信号放大近红外激发荧光生物传感器用于microRNA检测[J]. 应用化学, 2024, 41(1): 137-146. |
[3] | 陈玉竹, 刘思思, 张蒙蒙, 林祥德, 曾冬冬. 基于抗菌性壳聚糖/羧甲基纤维素复合药物涂层的聚氨酯敷料[J]. 应用化学, 2023, 40(2): 252-260. |
[4] | 黄旭娟, 王婷, 丁正青, 杨欣欣, 蔡照胜, 商士斌. 脱氢枞氧基聚氧乙烯缩水甘油醚接枝羟乙基壳聚糖水凝胶制备及其性能[J]. 应用化学, 2022, 39(9): 1421-1428. |
[5] | 刘也, 郭少波, 梁艳莉, 葛红光, 马剑琪, 刘智峰, 刘波. 核壳型纳米复合材料CuFe2O4@NH2@Pt的制备及催化性能[J]. 应用化学, 2022, 39(8): 1237-1245. |
[6] | 徐凤州, 唐华英, 刘吴荟, 江怡凤, 李文凯, 陆献海. 水体中铜离子的现场可视化半定量快速检测[J]. 应用化学, 2022, 39(8): 1303-1311. |
[7] | 赵常利, 秦明高, 窦晓秋, 冯传良. 纳米颗粒增强的手性超分子水凝胶成骨性能[J]. 应用化学, 2022, 39(1): 177-187. |
[8] | 崔昊, 王倩倩, 王晓琳, 何向明, 徐宏. 面向极紫外:光刻胶的发展回顾与展望[J]. 应用化学, 2021, 38(9): 1154-1167. |
[9] | 林秋棚, 章朱迎, 施冬健, 裴泽军, 陈明清, 倪忠斌. 缓释型壳聚糖/醋酸氯己定复合微球的制备与性能[J]. 应用化学, 2021, 38(12): 1599-1611. |
[10] | 赵冰冰, 邓东阳, 陈桂华, 宋清梅, 付建平, 张素坤, 周成勇, 鞠勇明. 壳聚糖-Fe(Ⅲ)复合凝胶球去除磷酸根的影响因素与吸附机理[J]. 应用化学, 2020, 37(6): 673-682. |
[11] | 刘兵, 宫辉力, 刘锐, 胡长文. 一步法制备二氧化钛-金复合材料及其光解水制氢性能[J]. 应用化学, 2019, 36(9): 1076-1084. |
[12] | 杨木泉, 肖凌宇, 张旋, 颜悦. Au/聚4-乙烯基吡啶-b-聚乙二醇嵌段聚合物刷的合成及其pH响应行为[J]. 应用化学, 2019, 36(4): 431-439. |
[13] | 孙雪娇, 王思琦, 董佳, 吴骑, 刘蕊, 李想, 于世钧, 张治广. Ag/NH2-MIL-125(Ti)的构建及可见光还原水中Cr(Ⅵ)[J]. 应用化学, 2019, 36(3): 314-323. |
[14] | 孙雪娇, 王思琦, 董佳, 吴骑, 刘蕊, 李想, 于世钧, 张治广. Ag/NH2-MIL-125(Ti)的构建及可见光还原水中Cr(Ⅵ)[J]. 应用化学, 2019, 36(3): 0-0. |
[15] | 李晶晶, 樊江莉, 彭孝军. 基于细乳液聚合的纳米颗粒制备与应用研究进展—撤稿(Withdrawed)[J]. 应用化学, 2018, 35(9): 1026-1036. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||