[1] | Frederickson C J,Koh J Y,Bush A I. The Neurobiology of Zinc in Health and Disease[J]. Nat Rev Neurosci,2005,6(6):449-462. | [2] | Que E L,Domaille D W,Chang C J. Metals in Neurobiology:Probing Their Chemistry and Biology with Molecular Imaging[J]. Chem Rev,2008,108(5):1517-1549. | [3] | Assaf S Y,Chung S H. Release of Endogenous Zn2+ from Brain Tissue During Activity[J]. Nature,1984,308(5961):734-736. | [4] | Choi D W,Koh J Y. Zinc and Brain Injury[J]. Annu Rev Neurosci,1998,21(21):347-375. | [5] | Wang L,Liu J H,Song Z M,et al.Interaction of Multi-Walled Carbon Nanotubes and Zinc Ions Enhances Cytotoxicity of Zinc Ions[J]. Sci China Chem,2016,59(7):910-917. | [6] | Maret W,Jacob C,Vallee B L,et al.Inhibitory Sites in Enzymes:Zinc Removal and Reactivation by Thionein[J]. Proc Natl Acad Sci USA,1999,96(5):1936-1940. | [7] | Falchuk K H. The Molecular Basis for the Role of Zinc in Developmental Biology[J]. Mol Cell Biochem,1998,188(1):41-48. | [8] | Cao M J,Chen H Y,Chen D,et al.Naphthalimide-Based Fluorescent Probe for Selectively and Specifically Detecting Glutathione in the Lysosomes of Living Cells[J]. Chem Commun,2016,52(4):721-724. | [9] | Maeda H,Bando Y,Shimomura K,et al.Chemical-Stimuli-Controllable Circularly Polarized Luminescence from Anion-Responsive π-Conjugated Molecules[J]. J Am Chem Soc,2011,133(24):9266-9269. | [10] | Akamatsu M,Komatsu H,Mori T,et al.Intracellular Imaging of Cesium Distribution in Arabidopsis Using Cesium Green[J]. ACS Appl Mater Interfaces,2014,6(11):8208-8211. | [11] | Mukherjee S,Salini P S,Srinivasan A,et al.AIEE Phenomenon:Tetraaryl vs. Triaryl Pyrazoles[J]. Chem Commun,2015,51(96):17148-17151. | [12] | Li J F,Yin C X,Huo F J. Development of Fluorescent Zinc Chemosensors Based on Various Fluorophores and Their Applications in Zinc Recognition[J]. Dyes Pigm,2016,131:100-133. | [13] | Maeda H,Kusunose Y. Dipyrrolyldiketone Difluoroboron Complexes: Novel Anion Sensors with C—H••••X Interactions[J]. Chem Eur J,2005,11(19):5661-5666. | [14] | Akamatsu M,Mori T,Okamoto K,et al.Detection of Ethanol in Alcoholic Beverages or Vapor Phase Using Fluorescent Molecules Embedded in a Nano Fibrous Polymer[J]. ACS Appl Mater Interfaces,2015,7(11):6189-6194. | [15] | Yin C X,Huo F J,Zhang J J,et al.Thiol-Addition Reactions and Their Applications in Thiol Recognition[J]. Chem Soc Rev,2013,42(14):6032-6059. | [16] | Zhang Y F,Chen H Y,Chen D,et al.A Colorimetric and Ratiometric Fluorescent Probe for Mercury(Ⅱ) in Lysosome[J]. Sens Actuators,B,2016,224:907-914. | [17] | Sreedevi K C G,Thomas A P,Aparna K H,et al. Photoenolization via Excited State Double Proton Transfer Induces “Turn On” Fluorescence in Diformyl Diaryl Dipyrromethane[J]. Chem Commun,2014,50(63):8667-8669. | [18] | Liu Y,Yu D H,Ding S S,et al.Rapid and Ratiometric Fluorescent Detection of Cysteine with High Selectivity and Sensitivity by a Simple and Readily Available Probe[J]. ACS Appl Mater Interfaces,2014,6(20):17543-17550. | [19] | Kumar K,Verma T,Mukherjee R,et al.Raman and Infra-Red Microspectroscopy:Towards Quantitative Evaluation for Clinical Research by Ratiometric Analysis[J]. Chem Soc Rev,2016,45:1879-1900. | [20] | Yu H O,Xiao Y,Qian X H,et al.Convenient and Efficient FRET Platform Featuring a Rigid Biophenyl Spacer Between Rhodamine and BODIPY:Transformation of “Turn-On” Sensors into Ratiometric Ones with Dual Emission[J]. Chem Eur J,2011,17(11):3179-3191. | [21] | Yu M X,Shi M,Chen Z G,et al.Highly Sensitive and Fast Responsive Fluorescence Turn-On Chemodosimeter for Cu2+ and Its Application in Live Cell Imaging[J]. Chem Eur J,2008,14(23):6892-6900. | [22] | Wu Y K,Peng X J,Guo B C,et al, Boron Dipyrromethene Fluorophore Based Fluorescence Sensor for the Selective Imaging of Zn(Ⅱ) in Living Cells[J]. Org Biomol Chem,2005,3(8):1387-1392. | [23] | Nan Q,Rong P,Jiang Y B,et al.New Highly Selective Turn-On Fluorescence Receptor for the Detection of Copper(Ⅱ)[J]. Spectrochim Acta A,2017,174(5):307-315. | [24] | Xu Z C,Yoon J,Spring D R. Fluorescent Chemosensors for Zn2+[J]. Chem Soc Rev,2010,39(6):1996-2006. | [25] | Chen Y C,Bai Y,Han Z,et al.Photoluminescence Imaging of Zn2+ in Living Systems[J]. Chem Soc Rev,2015,44(14):4517-4546. | [26] | Ding Y B,Tamg Y Y,Zhu W H,et al.Fluorescent and Colorimetric Ion Probes Based on Conjugated Oligopyrroles[J]. Chem Soc Rev,2015,44(5):1101-1112. | [27] | Li J,Yim D,Jang W D,et al.Recent Progress in the Design and Applications of Fluorescence Probes Containing Crown Ethers[J]. Chem Soc Rev,2016,46(9):2437-2650. | [28] | Ding Y B,Zhu W H,Xie Y S. Development of Ion Chemosensors Based on Porphyrin Analogues[J]. Chem Rev,2017,177(4):2203-2256. | [29] | Jiang P J,Guo Z J. Fluorescent Detection of Zinc in Biological Systems: Recent Development on the Design of Chemosensors and Biosensors[J]. Coord Chem Rev,2004,248(1/2):205-229. | [30] | Koike T,Watanabe T,Aoki S,et al.A Novel Biomimetic Zinc(Ⅱ)-Fluorophore, Dansylamidoethyl-Pendant Macrocyclic Tetraamine 1,4,7,10-Tetraazacyclododecane (Cyclen)[J]. J Am Chem Soc,1996,118(50):12696-12703. | [31] | WANG Zuohui,WANG Shumin. Research Advance on the Fluorescent Probe of Zn2+[J]. Guangzhou Chem Ind,2013,41(22)(in Chinese). 王作辉,王淑敏. 锌离子荧光探针研究进展[J]. 广州化工,2013,41(22). | [32] | de Silva P,de Silva S A. Fluorescent Signalling Crown Ethers; ‘Switching On’ of Fluorescence by Alkali Metal Ion Recognition and Binding in Situ[J]. J Chem Soc,Chem Commun,1986,1709(23):1709-1710. | [33] | Tomat E,Nolan E M,Jaworski J,et al.Organelle-Specific Zinc Detection Using Zinpyr-Labeled Fusion Proteins in Live Cells[J]. J Am Chem Soc,2008,130(47):15776-15777. | [34] | Zhang X A,Hayes D,Smith S J,et al.New Strategy for Quantifying Biological Zinc by a Modified Zinpyr Fluorescence Sensor[J]. J Am Chem Soc,2008,130(47):15788-15789. | [35] | Wong B A,Friedle S,Lippard S J. Solution and Fluorescence Properties of Symmetric Dipicolylamine-Containing Dichlorofluorescein-Based Zn2+ Sensors[J]. J Am Chem Soc,2009,131(20):7142-7152. | [36] | Tomat E,Lippard S J. Ratiometric and Intensity-Based Zinc Sensors Built on Rhodol and Rhodamine Platforms[J]. Inorg Chem,2010,49(20):9113-9115. | [37] | You Y M,Lee S,Kim T,et al.Phosphorescent Sensor for Biological Mobile Zinc[J]. J Am Chem Soc,2011,133(45):18328-18342. | [38] | Lin W,Buccella D,Lippard S J. Visualization of Peroxynitrite-Induced Changes of Labile Zn2+ in the Endoplasmic Reticulum with Benzoresorufin-Based Fluorescent Probes[J]. J Am Chem Soc,2013,135(36):13512-13520. | [39] | Rivera-Fuentes P,Lippard S J. SpiroZin 1:A Reversible and pH-Insensitive, Reaction-Based, Red-Fluorescent Probe for Imaging Biological Mobile Zinc[J]. Chem Med Chem,2014,9(6):1238-1243. | [40] | Radford R J,Chyan W,Lippard S J. Peptide Targeting of Fluorescein-Based Sensors to Discrete Intracellular Locales[J]. Chem Sci,2014,5(11):4512-4516. | [41] | Zastrow M L,Radford R J,Chyan W,et al.Reaction-Based Probes for Imaging Mobile Zinc in Live Cells and Tissues[J]. ACS Sens,2016,1(1):32-39. | [42] | Walkup G K,Burdette S C,Lippard S J,et al.A New Cell-Permeable Fluorescent Probe for Zn2+[J]. J Am Chem Soc,2000,122(23):5644-5645. | [43] | Burdette S C,Frederickson C J,Bu W M,et al.ZP4, an Improved Nuronal Zn2+ Sensor of The Zinpyr Family[J]. J Am Chem Soc,2003,125(7):1778-1787. | [44] | Nolan E M,Ryu J W,Jaworski J,et al.Zinspy Sensors with Enhanced Dynamic Range for Imaging Neuronal Cell Zinc Uptake and Mobilization[J]. J Am Chem Soc,2006,128(48):15517-15528. | [45] | Buccella D,Horowitz J A,Lippard S J. Understanding Zinc Quantification with Existing and Advanced Ditopic Fluorescent Zinpyr Sensors[J]. J Am Chem Soc,2011,133(11):4101-4114. | [46] | Xu Z C,Baek K H,Kim H N,et al.Zn2+-Triggered Amide Tautomerization Produces a Highly Zn2+-Selective, Cell-Permeable, and Ratiometric Fluorescent Sensor[J]. J Am Chem Soc,2010,132(2):601-610. | [47] | Hanaoka K,Kikuchi K,Kojima H,et al.Development of a Zinc Ion-Selective Luminescent Lanthanide Chemosensor for Biological Applications[J]. J Am Chem Soc,2004,126(39):12470-12476. | [48] | Shyamal M,Mazumdar P,Maity S,et al.Highly Selective Turn-On Fluorogenic Chemosensor for Robust Quantification of Zn(Ⅱ) Based on Aggregation Induced Emission Enhancement Feature[J]. ACS Sens,2016,1(6):739-747. | [49] | Xue L,Liu C,Jiang H. A Ratiometric Fluorescent Sensor with a Large Stokes Shift for Imaging Zinc Ions in Living Cells[J]. Chem Commun,2009,9(9):1061-1063. | [50] | Atilgan S,Ozdemir T,Akkaya E U. A Sensitive and Selective Ratiometric Near IR Fluorescent Probe for Zinc Ions Based on the Dstyryl-Bodipy Fluorophore[J]. Org Lett,2008,10(18):4065-4067. | [51] | Lu X Y,Zhu W H,Xie Y S,et al.Near-IR Core-Substituted Naphthalenediimide Fluorescent Chemosensors for Zinc Ions:Ligand Effects on PET and ICT Channels[J]. Chem Eur J,2010,16(28):8355-8364. | [52] | Sreenath K,Allen J R,Davidson M W,et al.A FRET-Based Indicator for Imaging Mitochondrial Zinc Ions[J]. Chem Commun,2011,47(42):11730-11732. | [53] | Woo H,You Y,Kim T,et al.Fluorescence Ratiometric Zinc Sensors Based on Controlled Energy Transfer[J]. J Mater Chem,2012,22(33):17100-17112. | [54] | Han Z X,Zhang X B,Li Z,et al.Efficient Fluorescence Resonance Energy Transfer-Based Ratiometric Fluorescent Cellular Imaging Probe for Zn2+ Using a Rhodamine Spirolactam as a Trigger[J]. Anal Chem,2010,82(8):3108-3113. | [55] | Luo J D,Xie Z L, Lam J W Y, et al. Aggregation-Induced Emission of 1-Methyl-1,2,3,4,5-Pentaphenylsilole[J]. Chem Commun,2001,18(18):1740-1741. | [56] | Hong Y N,Chen S J, Leung C W T, et al. Fluorogenic Zn(Ⅱ) and Chromogenic Fe(Ⅱ) Sensors Based on Terpyridine-Substituted Tetraphenylethenes with Aggregation-Induced Emission Characteristics[J]. ACS Appl Mater Interfaces,2011,3(9):3411-3418. | [57] | Gabr M T,Pigge F C. A Selective Fluorescent Sensor for Zn2+ Based on Aggregation-Induced Emission(AIE) Activity and Metal Chelating Ability of Bis(2-pyridyl)-Diphenylethylene[J]. Dalton Trans,2016,45:14039-14043. | [58] | Sun F,Zhang G X,Zhang D Q,et al.Aqueous Fluorescence Turn-On Sensor for Zn2+ with a Tetraphenylethylene Compound[J]. Org Lett,2011,13(24):6378-6381. | [59] | Akkaya E U,Huston M E,Czarnik A W. Chelation-Enhanced Fluorescence of Anthrylazamacrocycle Conjugate Probes in Aqueous Solution[J]. J Am Chem Soc,1990,112:3590-3593. | [60] | Cockrell G M,Zhang G, VanDerveer D G, et al. Enhanced Metal Ion Selectivity of 2,9-Di-(pyrid-2-yl)-1,10-phenanthroline and Its Use as a Fluorescent Sensor for Cadmium(Ⅱ)[J]. J Am Chem Soc,2008,130(4):1420-1430. | [61] | Ding Y B,Xie Y S,Li X,et al.Selective and Sensitive “Turn-On” Fluorescent Zn2+ Sensors Basedon Di- and Tripyrrins with Readily Modulated Emission Wavelengths[J]. Chem Commun,2011,47(19):5431-5433. | [62] | Ding Y,Li X,Li T,et al.α'-Monoacylated and α,α'- and α,β'-Diacylated Dipyrrins as Highly Sensitive Fluorescence “Turn-on” Zn2+ Probes[J]. J Org Chem,2013,78(11):53285338. | [63] | Ding Y B,Li T,Zhu W H,et al.Highly Selective Colorimetric Sensing of Cyanide Based on Formation of Dipyrrin Adducts[J]. Org Biomol Chem,2012,10(21):4201-4207. | [64] | Xie Y S,Wei P C,Li X,et al.Macrocycle Contraction and Expansion of a Dihydrosapphyrin Isomer[J]. J Am Chem Soc,2013,135(51):19119-19122. | [65] | Lu C L,Xu Z C,Cui J N,et al.Ratiometric and Highly Selective Fluorescent Sensor for Cadmium under Physiological pH Range:A New Strategy to Discriminate Cadmium from Zinc[J]. J Org Chem,2007,72(9):3554-3557. | [66] | Taki M,Wolford J L, O'Halloran T V. Emission Ratiometric Imaging of Intracellular Zinc:Design of a Benzoxazole Fluorescent Sensor and Its Application in Two-Photon Microscopy[J]. J Am Chem Soc,2004,126(3):712-713. | [67] | Nolan E M,Jaworski J,Okamoto K I,et al.QZ1 and QZ2:Rapid, Reversible Quinoline-Derivatized Fluoresceins for Sensing Biological Zn(Ⅱ)[J]. J Am Chem Soc,2005,127(48):16812-16823. | [68] | Dennis A E,Smith R C. “Turn-On” Fluorescent Sensor for the Selective Detection of Zinc Ion by a Sterically-Encumbered Bipyridyl-Based Receptor[J]. Chem Commun,2007:4641-4643. | [69] | Wei X D,Wang Q,Tang W Q,et al.Combination of Pyrrole and Pyridine for Constructing Selective and Sensitive Zn2+ Probes[J]. Dyes Pigm,2017,140:320-327. | [70] | Manandhar E,Cragg P J,Wallace K J. Detection of Zn(Ⅱ) Ions by Fluorescent Pyrene-Derived Molecular Probes[J]. Supramol Chem,2014,26:141-150. | [71] | Henary M M,Wu Y G,Fahrni C J. Zinc(Ⅱ)-Selective Ratiometric Fluorescent Sensors Based on Inhibition of Excited-State Intramolecular Proton Transfer[J]. Chem Eur J,2004,10(12):3015-3025. | [72] | Chen W H,Xing Y,Pang Y. A Highly Selective Pyrophosphate Sensor Based on ESIPT Turn-On in Water[J]. Org Lett,2011,13(6):1362-1365. | [73] | An M,Kim B Y,Seo H,et al.Fluorescence Sensor for Sequential Detection of Zinc and Phosphate Ions[J]. Spectrochim Acta,Part A,2016,169:87-94. | [74] | Li X,Li J,Dong X W,et al.A Novel 3-Hydroxychromone Fluorescence Sensor for Intracellular Zn2+ and Its Application in the Recognition of Prostate Cancer Cells[J]. Sens Actuators,B,2017,245:129-136. | [75] | Wu J S,Liu W M,Zhang X Q,et al.Fluorescence Turn On of Coumarin Derivatives by Metal Cations:A New Signaling Mechanism Based on C=N Isomerization[J]. Org Lett,2007,9(1):33-36. | [76] | Bhattacharyya A,Ghosh S,Makhal S C,et al.Hydrazine Bridged Coumarin-Pyrimidine Conjugate as a Highly Selectiveand Sensitive Zn2+ Sensor:Spectroscopic Unraveling of Sensing Mechanism with Practical Application[J]. Spectrochim Acta,Part A,2017,183:306-311. | [77] | Guo Z Q,Kim G H,Shin I,et al.A Cyanine-Based Fluorescent Probe for Detecting Endogenous Zinc Ions in Live Cells and Organisms[J]. Biomaterials,2012,33(31):7818-7827. | [78] | Zhu H,Fan J L,Peng X J,et al.Ratiometric Fluorescence Imaging of Lysosomal Zn2+ Release Under Oxidative Stress in Neural Stem Cells[J]. Biomater Sci,2014,2(1):89-97. |
|