Please wait a minute...
应用化学  2020, Vol. 37 Issue (1): 80-87    DOI: 10.11944/j.issn.1000-0518.2020.01.190165
  研究论文 本期目录 | 过刊浏览 | 高级检索 |
忻州师范学院化学系 山西 忻州 034000
Anthracene-Benzimidazolium Based Fluorescent Chemosensor for Highly Selective Recogniton of H2PO4-
DONG Zhiyun,ZHANG Xiaoyu,ZENG Zhengquan,XI Fugui()
Department of Chemistry, Xinzhou Teachers University,Xinzhou,Shanxi 034000,China
全文: PDF(1700 KB)   HTML
输出: BibTeX | EndNote (RIS)      

设计合成了基于蒽-苯并咪唑鎓的受体分子12,通过荧光发射光谱研究了受体分子12对F-、Cl-、Br-、I-、AcO-、HSO4-、H2PO4-、NO3-、ClO4-等阴离子的识别性能。 研究发现,在受体分子12的乙腈溶液(5.0×10-6 mol/L)中加入10倍化学计量的H2PO4-时,受体分子1的荧光猝灭百分数为13%,受体分子2的荧光猝灭百分数高达94%,表明受体分子2在构型上与H2PO4-更匹配,可作为H2PO4-的荧光关闭型(turn-off)探针。 受体分子2与H2PO4-的结合比为1:1,结合常数为(3.70±0.16)×104 L/mol,检出限为3.77×10-6 mol/L。

E-mail Alert
关键词 苯并咪唑鎓磷酸二氢根荧光探针    

Two novel anthracene-benzimidazolium based receptors 1 and 2 were synthesized. The anion (F-, Cl-, Br-, I-, AcO-, HSO4-, H2PO4-, ClO4-,NO3-) binding properties of receptors 1 and 2 were evaluated in acetonitrile by fluorescence spectroscopy. The receptors 1 and 2 display fluorescent quenching effect with H2PO4-, the quench percentage for receptor 1 is 13%,and for receptor 2 is as much as 94%. The results indicate that receptor 2 is more closely matched to H2PO4- in configuration, and receptor 2 can behave as a “turn-off” fluorescence sensor for H2PO4-. Job-plot shows that receptor 2 and H2PO4- form a 1:1 complex, the binding constant is (3.70±0.16)×104 L/mol, and the detection limit is 3.77×10-6 mol/L.

Key wordsanthracene    benzimidazolium    dihydrogen phosphate    fluorescent chemosensor
收稿日期: 2019-06-05           接受日期: 2019-09-05
通讯作者: 席福贵     E-mail:
董智云, 张晓宇, 曾政权, 席福贵. 基于蒽-苯并咪唑鎓的荧光传感器对H2PO4-的高选择性识别[J]. 应用化学, 2020, 37(1): 80-87.
DONG Zhiyun, ZHANG Xiaoyu, ZENG Zhengquan, XI Fugui. Anthracene-Benzimidazolium Based Fluorescent Chemosensor for Highly Selective Recogniton of H2PO4-. Chinese Journal of Applied Chemistry, 2020, 37(1): 80-87.
链接本文:      或
Scheme 1Synthesis of recpetors 1 and 2
图1受体分子1和2的乙腈溶液(5.0×10-6 mol/L)中加入10倍化学计量不同阴离子后的荧光强度变化
Fig.1Relative emission changes as difference between the emission intensity of receptors 1 and 2(5.0×10-6 mol/L) in the presence of 10 stoichiometric corresponding anions(I) and the receptors alone(I0) in acetonitrile
图2在受体分子1(A)和2(B)的乙腈溶液(浓度均为5.0×10-6 mol/L)中加入不同量H2PO4- (沿箭头方向:受体1:0,0.1,0.2,0.4,0.6,0.8,1.0,2.0,3.0,……,10.0倍化学计量;受体2:0,0.1,0.2,0.4,0.6,0.8,1.0,2.0,3.0,……,15.0倍化学计量)时的荧光光谱变化图
Fig.2Fluorescence titrations of receptors 1(A) and 2(B)(5.0×10-6 mol/L) with H2PO4-(along the arrows:0→10 stoichiometry for receptor 1; 0→15 stoichiometry for receptor 2) in CH3CN; Insets:normalized emission developments at 402 nm as a function of c(G)/c(H), and fluorescent color of receptors 1 and 2 in the absence and presence of H2PO4- under UV lamp excited at 365 nm
Fig.3Fluorescence spectra of receptor 2 and H2PO4- upon addition of other anions
图4受体分子1和2与H2PO4-作用的Job曲线(总浓度为5.0×10-6 mol/L)
Fig.4Job’s plot between receptors 1/2 and AcO- with a total concentration of 5.0×10-6 mol/L
Anion Receptor 1 Receptor 2
K/(L·mol-1) R2 Binding ratio K/(L·mol-1) R2 Binding ratio
F- (3.54±0.07)×103 0.9960 1:1 (5.88±0.03)×103 0.9906 1:1
AcO- (3.71±0.05)×103 0.9962 1:1 (6.65±0.08)×103 0.9927 1:1
HSO4- (3.27±0.03)×103 0.9980 1:1 (3.02±0.08)×103 0.9919 1:1
H2PO4- (3.70±0.16)×104 0.9902 1:1 (5.31±0.06)×105 0.9912 1:1
Table 1Binding constants of receptors 1 and 2 with various anions
Fig.5Optimized geometries of receptor 1 and 2 with H2PO4-
Receptor 1 Receptor 2
Heavy atom distance H-bond distance Heavy atom distance H-bond distance
C27—O58 0.2912 H30—O58 0.1875 C42—O90 0.2919 H45—O90 0.1891
C40—O58 0.3444 H42—O58 0.2556 C30—O91 0.2935 H33—O91 0.1913
C46—O61 0.3732 H42—O61 0.2546 C73—O92 0.3487 H75—O92 0.2419
C40—O61 0.3551 H48—O61 0.2753 C57—O94 0.3474 H59—O94 0.2388
Table 2Bond distances of receptors 1 and 2 with H2PO4-(nm)
1-H2PO4- -5.57 -2.06 3.51
2-H2PO4- -5.86 -2.45 3.41
Table 3DFT calculated HOMO, LUMO, HOMO-LUMO gap HLG(eV)
106c(H2PO4-) in samples/(mol·L-1) 106Detected c(H2PO4-)/(mol·L-1) RSD/% Recovery/%
2.5 2.486±0.036 0.88 99.4
5.0 5.221±0.055 0.59 104.4
7.5 7.513±0.048 1.06 100.2
Table 4Determination of H2PO4- in acetonitrile using the receptor 2
[1] Zhao J,Yang D,Yang X J,et al. Anion Coordination Chemistry:From Recognition to Supramolecular Assembly[J]. Coord Chem Rev,2019,378(8):415-444.
[2] Yang J,Dong C C,Chen X L,et al. Excimer Disaggregation Enhanced Emission:A Fluorescence “Turn-On” Approach to Oxoanion Recognition[J]. J Am Chem Soc,2019,141(11):4597-4612.
[3] Tepper R,Schubert U S.Halogen Bonding in Solution:Anion Recognition, Templated Self-assembly, and Organocatalysis[J]. Angew Chem Int Ed,2018,57(21):6004-6016.
[4] YAN Jijun,KANG Chuanqing,GAO Lianxun.Anion-Naphthalenediimide Interactions and Their Applications[J]. Prog Chem,2018,30(7):902-912(in Chinese). 闫吉军,康传清,高连勋. 阴离子-萘四酸双酰亚胺相互作用及其应用[J]. 化学进展,2018,30(7):902-912.
[5] Nieto S,Hargrove A E,Zhang T,et al. Artificial Receptors for the Recognition of Phosphorylated Molecules[J]. Chem Rev,2011,111(11):6603-6782.
[6] Warwick C,Guerreiro A,Soares A.Sensing and Analysis of Soluble Phosphates in Environmental Samples:A Review[J]. Biosens Bioelectron,2012,41(1):1-11.
[7] Law A A T,Adeloju S B. Progress and Recent Advances in Phosphate Sensors:A Review[J]. Talanta,2013,114:191-203.
[8] Zhang D,Cochrane J R,Martinez A,et al. Recent Advances in H2PO4-Fluorescent Sensors[J]. RSC Adv,2014,4(56):29735-29749.
[9] Patra C,Bhanja A K,Sen C,et al. Imine-Functionalized Thioether Zn(Ⅱ) Turn-On Fluorescent Sensor and Its Selective Sequential Logic Operations with H2PO4-, DFT Computation and Live Cell Imaging[J]. RSC Adv,2016,6(58):53378-53388.
[10] Ghosh K,Saha I.Ortho-Phenylenediamine-Based Open and Macrocyclic Receptors in Selective Sensing of H2PO4-, ATP and ADP under Different Conditions[J]. Org Biomol Chem,2012,10(47):9383-9392.
[11] Kondo S I,Takai R.Selective Detection of Dihydrogen Phosphate Anion by Fluorescence Change with Tetraamide-Based Receptors Bearing Isoquinolyl and Quinolyl Moieties[J]. Org Lett,2013,15(3):538-541.
[12] Kumar A,Kumar V,Upadhyay K K.An Al3+ and H2PO4-/HSO4- Selective Conformational Arrest and Bail to a Pyrimidine-Naphthalene Anchored Molecular Switch[J]. Analyst,2013,138(6):1891-1897.
[13] Kui D,Niu S Z,Li Q,et al. A Highly Selective Ratiometric Fluorescent Probe for the Cascade Detection of Zn2+ and H2PO4- and Its Application in Living Cell Imaging[J]. RSC Adv,2017,7(64):40615-40620.
[14] Du K,Liu J,Shen R,et al. Design and Synthesis of a New Fluorescent Probe for Cascade Detection of Zn2+ and H2PO4- in Water and Targeted Imaging of Living Cells[J]. Luminescence,2019,34(4):407-414.
[15] Zhang Y H,Huang H W,Yang S S,et al. A New Ferrocenophane with Amide and Triazole Donors for Recognition of Dihydrogenphosphate Anion[J]. J Organomet Chem,2018,871:74-78.
[16] Du K,Niu S,Chen X,et al. A Novel Highly Selective Ratiometric Fluorescent Sensor for Relay Recognition of Zn2+ and H2PO4-[J]. Tetrahedron Lett,2018,59(4):356-360.
[17] Zhang Y M,Li Y F,Zhong K P,et al. A Novel Pillar[5]arene-Based Supramolecular Organic Framework Gel to Achieve an Ultrasensitive Response by Introducing the Competition of Cation…π and π…π Interactions[J]. Soft Matter,2018,14:3624-3631.
[18] Feng X,Fu Y,Jin J,et al. A Highly Selective and Sensitive Fluorescent Sensor for Relay Recognition of Zn2+ and HSO4-/H2PO4- Fluorescent Responses[J]. Anal Biochem,2018,563:20-24.
[19] Du W,Jia C,Zhang Y,et al. A Sc-3-HF Complex as a Fluorescent Chemosensor for the Selective Detection of Dihydrogen Phosphate[J]. Anal Methods,2018,10:1993-1998.
[20] Das R,Pathak N,Choudhury S,et al. Dihydrogenphosphate Recognition:Assistance from the Acidic OH Moiety of the Anion[J]. J Mol Struct,2017,1148:81-88.
[21] Su Y,Zhang D,Jia P,et al. Highly Selective and Sensitive Long Fluorescence Lifetime Polyurethane Foam Sensor Based on Tb-Complex as Chromophore for the Detection of H2PO4- in Water[J]. Spectrochim Acta A,2019,217:86-92.
[22] Wang K P,Zhang S J,Lv C D,et al. A Highly Sensitive and Selective Turn-On Fluorescent Sensor for Dihydrogen Phosphate in Living Cells[J]. Sens Actuators B:Chem,2017,247:791-796.
[23] Molina P,Zapata F,Caballero A.Anion Recognition Strategies Based on Combined Noncovalent Interactions[J]. Chem Rev,2017,117(15):9907-9972.
[24] Liu Q X,Hu Z L,Zhao Z X.A New Fluorescent-Colorimetric Chemosensor for Fluoride Anion Based on Benzimidazolium Salt[J]. Tetrahedron,2018,74(46):6710-6716.
[25] Kim J,Morozumi T,Nakamura H.Control Between TICT and PET Using Chemical Modification of N-Phenyl-9-anthracenecarboxamide and Its Application to a Crown Ether Type Chemosensor[J]. Tetrahedron,2008,64(47):10735-10740.
[26] Zhou L,Sun Q F.A Self-assembled Pd2L4 Cage that Selectively Encapsulates Nitrate[J]. Chem Commun,2015,51(94):16767-16770.
[27] Herbert J M,Woodgate P D,Denny W A. Potential Antitumor Agents.53.Synthesis, DNA Binding Properties, and Biological Activity of Perimidines Designed as Minimal DNA-Intercalating Agents[J]. J Med Chem,1987,30(11):2081-2086.
[28] Liu G,Zhao L.A Simple Colorimetric and On-Off Fluorescent Chemosensor for Biologically Important Anions Based on Thiourea Groups[J]. Spectrosc Lett,2012,45(6):424-429.
[29] HUANG Xiaomei,DENG Xiang.Preparation of New Photoluminescent Carbon Dots and Its Application in Hg2+ Detection[J]. Chinese J Appl Chem,2019,36(5):603-610(in Chinese). 黄小梅,邓祥. 新型荧光碳点的制备及其在Hg2+检测中的应用[J]. 应用化学,2019,36(5):603-610.
[30] Valeur B,Pouget J,Bourson J.Tuning of Photoinduced Energy Transfer in a Bichromophoric Coumarin Supermolecule by Cation Binding[J]. J Phys Chem,1992,96:6545-6549.
[31] Zapata F,Gonzalez L,Caballero A,et al. Dual Role of the 1,2,3-Triazolium Ring as a Hydrogen-Bond Donor and Anion-π Receptor in Anion-Recognition Processes[J]. Chem-Eur J,2015,21(27):9797-9808.
[1] 张莹莹, 王丽艳, 赵冰, 宋波. 基于苯并吲哚的荧光探针对Al3+的识别及应用[J]. 应用化学, 2020, 37(1): 88-95.
[2] 高漫, 何鑫, 崔京南, 刘涛, 田镇豪, 何深贵. 以香豆素为母体快速检测内源性甲醛的荧光探针[J]. 应用化学, 2019, 36(9): 1053-1060.
[3] 潘文慧,李文,屈璟涵,叶懿霈,屈军乐,杨志刚. 单分子定位超分辨显微成像有机荧光探针的研究进展[J]. 应用化学, 2019, 36(3): 269-281.
[4] 张成路, 王静, 李静怡, 于向坤, 杨敬怡, 柴金华, 李益政, 王华玉, 宫荣庆. 邻菲啰啉并1,2,4-三嗪钴(Ⅲ)配合物的合成及其对小牛胸腺DNA的荧光识别[J]. 应用化学, 2019, 36(2): 212-222.
[5] 刘学文, 唐裕才. 一种钌(Ⅱ)配合物荧光探针用于半胱氨酸和高半胱氨酸的检测[J]. 应用化学, 2019, 36(12): 1456-1461.
[6] 苏策, 常开善, 李思良, 李冠斌, 张红博, 白玲玲. 一种香豆素类锌离子荧光探针的合成及性能[J]. 应用化学, 2018, 35(5): 532-537.
[7] 陈帆, 郭志前, 朱为宏. pH和温度敏感型聚合物荧光探针的合成及应用[J]. 应用化学, 2018, 35(4): 401-409.
[8] 尹正日. 一种可再生高选择性的硫化氢荧光探针[J]. 应用化学, 2018, 35(12): 1514-1520.
[9] 王涛,马拉毛草,马恒昌. 基于聚集诱导发光荧光探针的细胞成像研究进展[J]. 应用化学, 2018, 35(10): 1155-1165.
[10] 徐玉林,刘春荣. 蛋氨酸亚砜/蛋氨酸亚砜还原酶荧光检测研究进展[J]. 应用化学, 2018, 35(1): 21-27.
[11] 黄子珂,刘超,付强强,李进,邹建梅,谢斯滔,邱丽萍. 核酸适配体荧光探针在生化分析和生物成像中的研究进展[J]. 应用化学, 2018, 35(1): 28-39.
[12] 刘传涛, 肖婷, 王芳, 陈小强. 一种基于联萘衍生物荧光探针的合成及其对精氨酸的识别[J]. 应用化学, 2018, 35(1): 40-45.
[13] 王昭昀, 张萍, 张敏, 焦莉娟. 喹啉取代的氟硼二吡咯染料类三价铁离子荧光探针的合成与性能[J]. 应用化学, 2018, 35(1): 46-52.
[14] 王德佳, 徐勇前, 孙世国, 李红娟. 激发态分子内质子转移荧光探针的研究进展[J]. 应用化学, 2018, 35(1): 1-20.
[15] 刘传涛, 肖婷, 王芳, 陈小强. 一种基于联萘衍生物荧光探针的合成及其对精氨酸的识别[J]. 应用化学, 2018, 35(1): 0-0.
Full text



 Chinese Journal of Applied Chemistry
地址:长春市人民大街5625号 邮编:130022
电话:0431-85262016 85262330 传真:0431-85685653 E-mail: