Chinese Journal of Applied Chemistry ›› 2023, Vol. 40 ›› Issue (2): 169-187.DOI: 10.19894/j.issn.1000-0518.220236
• Review • Previous Articles Next Articles
Qin ZHANG, Wen-Bin LIU, Li-Jiao FAN, Yu-Ming XIE, Guo-Lin HUANG()
Received:
2022-07-08
Accepted:
2022-10-28
Published:
2023-02-01
Online:
2023-02-27
Contact:
Guo-Lin HUANG
About author:
guolinhuang@sina.comSupported by:
CLC Number:
Qin ZHANG, Wen-Bin LIU, Li-Jiao FAN, Yu-Ming XIE, Guo-Lin HUANG. Research Progress in the Preparation of Functionalized Mesoporous Silica and Its Application in Adsorption and Separation of Uranium from Water[J]. Chinese Journal of Applied Chemistry, 2023, 40(2): 169-187.
Add to citation manager EndNote|Ris|BibTeX
URL: http://yyhx.ciac.jl.cn/EN/10.19894/j.issn.1000-0518.220236
Fig.2 Formation of mesoporous materials by structure-directing agents[38]Note: (a) True liquid-crystal template mechanism; (b) Cooperative liquid-crystal template mechanism
Fig.3 (a-d, f)Scanning electron micrographs(SEM) of rod-shaped, spherical, fibrous, cuboidal, and platelet-shaped mesoporous silicon, respectively[41-44], and (e) transmission electron micrographs(TEM) of fibrous spherical mesoporous silicon[45]
Fig.9 Response surface diagram of the effect of initial concentration and pH, initial concentration and temperature on the adsorption of UO22+ from aqueous solution by NH2-MCM-41[67]
Adsorbents | Pore diameter/nm | BET surface area/(m2·g-1) | Equilibrium time /min | Qmax/ (mg·g-1) | Isotherm model | Ref. |
---|---|---|---|---|---|---|
NP10 | 2.7 | 920 | 30 | 303 | Langmuir model | [ |
DIMs | 6.7 | — | 10 | 268 | Langmuir model | [ |
MCM-SUC | 2.3 | 539 | 10 | 807 | Langmuir model | [ |
MMSN10N | 2.88- | 815 | 360 | 160 | Langmuir model | [ |
MMS-AO | 2.2 | 287.1 | 120 | 277.3 | Langmuir model | [ |
Fe-MCM-SUC | 3-13 | 233 | — | 430 | Langmuir model | [ |
NH2-MCM-41 | 1.9 | 577 | 173 | 435 | Langmuir model | [ |
MCM-TEPA | 3.86 | 1052 | 30 | 454 | Langmuir model | [ |
SBA-15-N2C1 | 6.1 | 267 | 30 | 573 | Langmuir model | [ |
PFG-MSs | 4.6 | 1.5 | 60 | 207.6 | Freundlich model | [ |
SMS-Ph | 7.73 | 4.28 | 60 | 820.7 | Freundlich model | [ |
Fe3O4@SiO2-AO | — | — | 120 | 104.96 | Langmuir model | [ |
AO-MCM-41 | — | — | 40 | 442.3 | Temkin and Freundlich | [ |
Ami-MSN | 0.619 | 676 | 150 | 200.41 | Langmuir model | [ |
MCM-41-AO | — | — | 90 | 384.59 | Langmuir model | [ |
MCC/MS-AO | 2.85 | 358.45 | 90 | 315.46 | Langmuir model | [ |
Al/MS-AO | 0.75 | 308.89 | 180 | 328.68 | Langmuir model | [ |
Table 1 The adsorption properties and main parameters of some functionalized mesoporous silicon for uranium
Adsorbents | Pore diameter/nm | BET surface area/(m2·g-1) | Equilibrium time /min | Qmax/ (mg·g-1) | Isotherm model | Ref. |
---|---|---|---|---|---|---|
NP10 | 2.7 | 920 | 30 | 303 | Langmuir model | [ |
DIMs | 6.7 | — | 10 | 268 | Langmuir model | [ |
MCM-SUC | 2.3 | 539 | 10 | 807 | Langmuir model | [ |
MMSN10N | 2.88- | 815 | 360 | 160 | Langmuir model | [ |
MMS-AO | 2.2 | 287.1 | 120 | 277.3 | Langmuir model | [ |
Fe-MCM-SUC | 3-13 | 233 | — | 430 | Langmuir model | [ |
NH2-MCM-41 | 1.9 | 577 | 173 | 435 | Langmuir model | [ |
MCM-TEPA | 3.86 | 1052 | 30 | 454 | Langmuir model | [ |
SBA-15-N2C1 | 6.1 | 267 | 30 | 573 | Langmuir model | [ |
PFG-MSs | 4.6 | 1.5 | 60 | 207.6 | Freundlich model | [ |
SMS-Ph | 7.73 | 4.28 | 60 | 820.7 | Freundlich model | [ |
Fe3O4@SiO2-AO | — | — | 120 | 104.96 | Langmuir model | [ |
AO-MCM-41 | — | — | 40 | 442.3 | Temkin and Freundlich | [ |
Ami-MSN | 0.619 | 676 | 150 | 200.41 | Langmuir model | [ |
MCM-41-AO | — | — | 90 | 384.59 | Langmuir model | [ |
MCC/MS-AO | 2.85 | 358.45 | 90 | 315.46 | Langmuir model | [ |
Al/MS-AO | 0.75 | 308.89 | 180 | 328.68 | Langmuir model | [ |
Fig.10 (A) FT-IR spectra of SA, aMSP, and aMSP/SA before and after adsorption; (B) XPS spectra for aMSP/SA before and after adsorption; (C) XPS spectra of curve fitted N1s of aMSP/SA before and after adsorption; (D) backscattered electron image of aMSP/SA after adsorption[87]
Atom.c/% | O | Si | Cl | Ca | U |
---|---|---|---|---|---|
aMSP/SA | 70.0 | 14.9 | 1.9 | 11.5 | Not detected |
aMSP/SA-U | 73.3 | 17.6 | 6.1 | Not detected | 3.0 |
Table 2 Sample surface area element composition (EDS analysis) (only elements greater than 0.1% are listed)
Atom.c/% | O | Si | Cl | Ca | U |
---|---|---|---|---|---|
aMSP/SA | 70.0 | 14.9 | 1.9 | 11.5 | Not detected |
aMSP/SA-U | 73.3 | 17.6 | 6.1 | Not detected | 3.0 |
Fig.12 (A)FT-IR spectra and difference spectra obtained for OMS(a) and OMS-P(b) in contact with U(Ⅵ) solutions of various uranium initial/total concentrations;(B)Raman spectra of OMS-P and OMS after U(?Ⅵ) adsorption at different initial/total U(Ⅵ) concentration[92]
Fig. 14 (a)XPS spectra of MCM-41-AO-40% and MCM-41-AO-40%-U; (b)High resolution spectra of U4f; (c)N1s and(d)O1s core-level spectra of MCM-41-AO-40% and MCM-41-AO-40%-U[78]
1 | CHAUDHARY M, SINGH L, REKHA P, et al. Adsorption of uranium from aqueous solution as well as seawater conditions by nitrogen-enriched nanoporous polytriazine[J]. Chem Eng J, 2019, 378: 122236. |
2 | LADEIRA A C Q, MORAIS C A. Uranium recovery from industrial effluent by ion exchange-column experiments[J]. Miner Eng, 2005, 18(13): 1337-1340. |
3 | AL-HOBAIB A S, AL-SUHYBANI A A. Removal of uranyl ions from aqueous solutions using barium titanate[J]. J Radioanal Nucl Chem, 2014, 299(1): 559-567. |
4 | WANG J, YIN M, LIU J, et al. Geochemical and U-Th isotopic insights on uranium enrichment in reservoir sediments[J]. J Hazard Mater, 2021, 414: 125466. |
5 | BELTRAMI D, CHAGNES A, HADDAD M, et al. Recovery of uranium(Ⅵ) from concentrated phosphoric acid by mixtures of new bis(1,3-dialkyloxypropan-2-yl)phosphoric acids and tri-n-octylphosphine oxide[J]. Hydrometallurgy, 2013, 140: 28-33. |
6 | DINIS M D, FIÚZA A. Mitigation of uranium mining impacts-a review on groundwater remediation technologies[J]. Geosciences, 2021, 11(6): 250. |
7 | HUANG G, PENG W, YANG S. Synthesis of magnetic chitosan/graphene oxide nanocomposites and its application for U(Ⅵ) adsorption from aqueous solution[J]. J Radioanal Nucl Chem, 2018, 317(1): 337-344. |
8 | PENG W, HUANG G, YANG S, et al. Performance of biopolymer/graphene oxide gels for the effective adsorption of U(Ⅵ) from aqueous solution[J]. J Radioanal Nucl Chem, 2019, 322(2): 861-868. |
9 | 刘小冬,陈沈. 二氧化钍纳米球在碳酸铀酰铵溶液中对铀的吸附性能[J]. 应用化学, 2017, 34(10): 1177-1185. |
LIU X D, CHEN S. Adsorption performance of thorium dioxide nanospheres towards uranium in the aqueous solution of ammonium uranyl tricarbonate[J].Chin J Appl Chem, 2017, 34(10): 1177-1185. | |
10 | HE H, ZONG M, DONG F, et al. Simultaneous removal and recovery of uranium from aqueous solution using TiO2 photoelectrochemical reduction method[J]. J Radioanal Nucl Chem, 2017, 313(1): 59-67. |
11 | MOON H S, MCGUINNESS L, KUKKADAPU R K, et al. Microbial reduction of uranium under iron- and sulfate-reducing conditions: effect of amended goethite on microbial community composition and dynamics[J]. Water Res, 2010, 44(14): 4015-4028. |
12 | DA'NA E. Adsorption of heavy metals on functionalized-mesoporous silica: a review[J]. Microporous Mesoporous Mater, 2017, 247: 145-157. |
13 | KRESGE C T, LEONOWICZ M E, ROTH W J, et al. Ordered mesoporous molecular sieves synthesized by a liquid-crystal template mechanism[J]. Nature, 1992, 359(6397): 710-712. |
14 | BECK J S, VARTULI J C, ROTH W J, et al. A new family of mesoporous molecular sieves prepared with liquid crystal templates[J]. J Am Chem Soc, 1992, 114(27): 10834-10843. |
15 | LYU Y, ASOH T A, UYAMA H. Hierarchical silica monolith prepared using cellulose monolith as template[J]. Polym Degrad Stab, 2020, 177: 109164. |
16 | WU S H, MOU C Y, LIN H P. Synthesis of mesoporous silica nanoparticles[J]. Chem Soc Rev, 2013, 42(9): 3862-3875. |
17 | ZHANG Z, LIU H, WU L, et al. Preparation of amino-Fe(Ⅲ) functionalized mesoporous silica for synergistic adsorption of tetracycline and copper[J]. Chemosphere, 2015, 138: 625-632. |
18 | ZHAO D, HUO Q, FENG J, et al. Nonionic triblock and star diblock copolymer and oligomeric surfactant syntheses of highly ordered, hydrothermally stable, mesoporous silica structures[J]. J Am Chem Soc, 1998, 120(24): 6024-6036. |
19 | INAGAKI S, FUKUSHIMA Y, KURODA K. Synthesis of highly ordered mesoporous materials from a layered polysilicate[J]. J Chem Soc, Chem Commun, 1993(8): 680-682. |
20 | BAGSHAW STEPHEN A, PROUZET E, PINNAVAIA THOMAS J. Templating of mesoporous molecular sieves by nonionic polyethylene oxide surfactants[J]. Science, 1995, 269(5228): 1242-1244. |
21 | KIM S S, ZHANG W, PINNAVAIA T J. Ultrastable mesostructured silica vesicles[J]. Science, 1998, 282(5392): 1302-1305. |
22 | KLEITZ F, HEI CHOI S, RYOO R. Cubic Ia3d large mesoporous silica: synthesis and replication to platinum nanowires, carbon nanorods and carbon nanotubes[J]. Chem Commun, 2003(17): 2136-2137. |
23 | FAN J, YU C, GAO F, et al. Cubic mesoporous silica with large controllable entrance sizes and advanced adsorption properties[J]. Angew Chem Int Ed, 2003, 42(27): 3146-3150. |
24 | VIDYA K, DAPURKAR S E, SELVAM P, et al. The entrapment of U O 2 2 + in mesoporous MCM-41 and MCM-48 molecular sieves[J]. Microporous Mesoporous Mater, 2001, 50(2): 173-179. |
25 | JAMALI M R, ASSADI Y, SHEMIRANI F, et al. Synthesis of salicylaldehyde-modified mesoporous silica and its application as a new sorbent for separation, preconcentration and determination of uranium by inductively coupled plasma atomic emission spectrometry[J]. Anal Chim Acta, 2006, 579(1): 68-73. |
26 | YUAN L Y, LIU Y L, SHI W Q, et al. High performance of phosphonate-functionalized mesoporous silica for U(Ⅵ)sorption from aqueous solution[J]. Dalton Trans, 2011, 40(28): 7446-7453. |
27 | YUAN L Y, LIU Y L, SHI W Q, et al. A novel mesoporous material for uranium extraction, dihydroimidazole functionalized SBA-15[J]. J Mater Chem, 2012, 22(33): 17019-17026. |
28 | GUNATHILAKE C, GÓRKA J, DAI S, et al. Amidoxime-modified mesoporous silica for uranium adsorption under seawater conditions[J]. J Mater Chem A, 2015, 3(21): 11650-11659. |
29 | DOLATYARI L, YAFTIAN M R, ROSTAMNIA S. Removal of uranium(Ⅵ) ions from aqueous solutions using Schiff base functionalized SBA-15 mesoporous silica materials[J]. J Environ Manage, 2016, 169: 8-17. |
30 | BAI L, DUAN S, JIANG W, et al. High performance polydopamine-functionalized mesoporous silica nanospheres for U(Ⅵ) removal[J]. Appl Surf Sci, 2017, 426: 1121-1132. |
31 | AMESH P, SUNEESH A S, VENKATESAN K A, et al. High capacity amidic succinic acid functionalized mesoporous silica for the adsorption of uranium[J]. Colloid Surface A, 2020, 602: 125053. |
32 | LIU F, WANG A, XIANG M, et al. Effective adsorption and immobilization of Cr(Ⅵ) and U(Ⅵ) from aqueous solution by magnetic amine-functionalized SBA-15[J]. Sep Purif Technol, 2022, 282: 120042. |
33 | 张春. 介孔SiO2及其氧化物复合材料的制备与表征[D]. 合肥: 安徽大学, 2010. |
ZHANG C. Preparation and characterization of mesoporous SiO2 and oxide/SiO, nanocomposites[D]. Hefei: Anhui University, 2010. | |
34 | 段昌龙, 谢昆沛, 陈权, 等. 多级介孔MCM-48的水热法制备及其对三唑酮的负载[J]. 仲恺农业工程学院学报, 2019, 32(4): 19-25. |
DUAN C L, XIE K P, CHEN Q, et al. Hydrothermal synthesis of multistage mesoporous MCM-48 and its loading on triadimefon[J]. J Zhongkai Inst Agric Eng, 2019, 32(4): 19-25. | |
35 | COSTA J A S, VEDOVELLO P, PARANHOS C M. Use of ionic liquid as template for hydrothermal synthesis of the MCM-41 mesoporous material[J]. Silicon, 2020, 12(2): 289-294. |
36 | 姚汝亮, 张炜, 周达. 溶胶-凝胶法原位生成SiO2改性硅基耐烧蚀材料[J]. 高分子学报, 2009(3): 264-267. |
YAO R L, ZHANG W, ZHOU D. In-situ silica preparation in sillicon-based ablation-resistant material by sol-gel method[J]. Acta Polym Sin, 2009(3): 264-267. | |
37 | 秦君. 介孔二氧化硅纳米材料的合成及其在室温磷光分析中的应用[D]. 太原: 山西师范大学, 2017. |
QIN J. Synthesis of mesoporous silica nanomaterials and the application in room temperature phosphorescence analysis[D].Taiyuan: Shanxi Normal University, 2017. | |
38 | HOFFMANN F, CORNELIUS M, MORELL J, et al. Silica-based mesoporous organic-inorganic hybrid materials[J]. Angew Chem Int Ed, 2006, 45(20): 3216-3251. |
39 | HUO Q, MARGOLESE D I, CIESLA U, et al. Generalized synthesis of periodic surfactant/inorganic composite materials[J]. Nature, 1994, 368(6469): 317-321. |
40 | MENG C, ZHIKUN W, QIANG L, et al. Preparation of amino-functionalized Fe3O4@mSiO2 core-shell magnetic nanoparticles and their application for aqueous Fe3+ removal[J]. J Hazard Mater, 2018, 341: 198-206. |
41 | NEAMANI S, MORADI L, SUN M. Synthesis of magnetic hollow mesoporous N-doped silica rods as a basic catalyst for the preparation of some spirooxindole-1,4-dihydropyridine derivatives[J]. Appl Surf Sci, 2020, 504: 144466. |
42 | MELÉNDEZ-ORTIZ H I, GARCÍA-CERDA L A, OLIVARES-MALDONADO Y, et al. Preparation of spherical MCM-41 molecular sieve at room temperature: influence of the synthesis conditions in the structural properties[J]. Ceram Int, 2012, 38(8): 6353-6358. |
43 | AGHAYAN H, KHANCHI A R, YOUSEFI T, et al. Tungsten substituted molybdophosphoric acid loaded on various types of mesoporous silica SBA-15 for application of thorium ion adsorption[J]. J Nucl Mater, 2017, 496: 207-214. |
44 | XIAO J, JING Y, YAO Y, et al. Synthesis of amidoxime-decorated 3D cubic mesoporous silica via self-assembly co-condensation as a superior uranium(Ⅵ) adsorbent[J]. J Mol Liq, 2019, 277: 843-855. |
45 | POLSHETTIWAR V, CHA D, ZHANG X, et al. High-surface-area silica nanospheres(KCC-1) with a fibrous morphology[J]. Angew Chem Int Ed, 2010, 49(50): 9652-9656. |
46 | WANG X, JI G, ZHU G, et al. Surface hydroxylation of SBA-15 via alkaline for efficient amidoxime-functionalization and enhanced uranium adsorption[J]. Sep Purif Technol, 2019, 209: 623-635. |
47 | DAI Y, JIN J, ZHOU L, et al. Preparation of hollow SiO2 microspheres functionalized with amidoxime groups for highly efficient adsorption of U(Ⅵ) from aqueous solution[J]. J Radioanal Nucl Chem, 2017, 311(3): 2029-2037. |
48 | LU D, XU S, QIU W, et al. Adsorption and desorption behaviors of antibiotic ciprofloxacin on functionalized spherical MCM-41 for water treatment[J]. J Clean Prod, 2020, 264: 121644. |
49 | KISHOR R, GHOSHAL A K. APTES grafted ordered mesoporous silica KIT-6 for CO2 adsorption[J]. Chem Eng J,2015, 262: 882-890. |
50 | FAROOGHI A, SAYADI M H, REZAEI M R, et al. An efficient removal of lead from aqueous solutions using FeNi3@SiO2 magnetic nanocomposite[J]. Surf Interfaces, 2018, 10: 58-64. |
51 | DASHTIAN K, ZARE-DORABEI R. Synthesis and characterization of functionalized mesoprous SBA-15 decorated with Fe3O4 nanoparticles for removal of Ce(Ⅲ) ions from aqueous solution: ICP-OES detection and central composite design optimization[J]. J Colloid Interface Sci, 2017, 494: 114-123. |
52 | ZHANG X, ZHANG Y, ZHANG X, et al. Nitrogen rich core-shell magnetic mesoporous silica as an effective adsorbent for removal of silver nanoparticles from water[J]. J Hazard Mater, 2017, 337: 1-9. |
53 | FAN R, MIN H, HONG X, et al. Plant tannin immobilized Fe3O4@SiO2 microspheres: a novel and green magnetic bio-sorbent with superior adsorption capacities for gold and palladium[J]. J Hazard Mater, 2019, 364: 780-790. |
54 | GUO W, NIE C, WANG L, et al. Easily prepared and stable functionalized magnetic ordered mesoporous silica for efficient uranium extraction[J]. Sci China Chem, 2016, 59(5): 629-636. |
55 | LI D, EGODAWATTE S, KAPLAN D I, et al. Sequestration of U(Ⅵ) from acidic, alkaline, and high ionic-strength aqueous media by functionalized magnetic mesoporous silica nanoparticles: capacity and binding mechanisms[J]. Environ Sci Technol, 2017, 51(24): 14330-14341. |
56 | ZHAO Y, LI J, ZHANG S, et al. Amidoxime-functionalized magnetic mesoporous silica for selective sorption of U(Ⅵ)[J]. RSC Adv, 2014, 4(62): 32710-32717. |
57 | FAN F L, QIN Z, BAI J, et al. Rapid removal of uranium from aqueous solutions using magnetic Fe3O4@SiO2 composite particles[J]. J Environ Radioact, 2012, 106: 40-46. |
58 | AMESH P A, VENKATESAN K, SUNEESH A S, et al. Succinic acid functionalized magnetic mesoporous silica for the magnetic assisted separation of uranium from aqueous solution[J]. J Radioanal Nucl Chem, 2022, 331(6): 2719-2733. |
59 | ULU A, NOMA S A A, KOYTEPE S, et al. Chloro-modified magnetic Fe3O4@MCM-41 core-shell nanoparticles for L-asparaginase immobilization with improved catalytic activity, reusability, and storage stability[J]. Appl Biochem Biotechnol, 2019, 187(3): 938-956. |
60 | WANG S, WANG K, DAI C, et al. Adsorption of Pb2+ on amino-functionalized core-shell magnetic mesoporous SBA-15 silica composite[J]. Chem Eng J, 2015, 262: 897-903. |
61 | FU Y, SUN Y, CHEN Z, et al. Functionalized magnetic mesoporous silica/poly(m-aminothiophenol)nanocomposite for Hg(Ⅱ) rapid uptake and high catalytic activity of spent Hg(Ⅱ) adsorbent[J]. Sci Total Environ, 2019, 691: 664-674. |
62 | VOJOUDI H, BADIEI A, BAHAR S, et al. A new nano-sorbent for fast and efficient removal of heavy metals from aqueous solutions based on modification of magnetic mesoporous silica nanospheres[J]. J Magn Magn Mater, 2017, 441: 193-203. |
63 | ZHANG Y, YUE Q, ZAGHO M M, et al. Core-shell magnetic mesoporous silica microspheres with large mesopores for enzyme immobilization in biocatalysis[J]. ACS Appl Mater Interfaces, 2019, 11(10): 10356-10363. |
64 | FU X, CHEN X, WANG J, et al. Fabrication of carboxylic functionalized superparamagnetic mesoporous silica microspheres and their application for removal basic dye pollutants from water[J]. Microporous Mesoporous Mater, 2011, 139(1): 8-15. |
65 | WANG F, TANG Y, ZHANG B, et al. Preparation of novel magnetic hollow mesoporous silica microspheres and their efficient adsorption[J]. J Colloid Interface Sci, 2012, 386(1): 129-134. |
66 | LOBATO N C C, FERREIRA A D M, WEIDLER P G, et al. Microstructure and chemical stability analysis of magnetic core coated with SILICA and functionalized with silane OTS[J]. Appl Surf Sci, 2020, 505: 144565. |
67 | SERT Ş, ERAL M. Uranium adsorption studies on aminopropyl modified mesoporous sorbent(NH2-MCM-41)using statistical design method[J]. J Nucl Mater, 2010, 406(3): 285-292. |
68 | 张宗波, 袁亚莉, 周智慧, 等. 多氨基含氮配体改性有序介孔材料的制备及对铀(Ⅵ)的吸附性能研究[J]. 应用化工, 2016, 45(4): 603-607. |
ZHANG Z B, YUAN Y L, ZHOU Z H, et al. Preparation and adsorption of uranyl of multi-amino nitrogen ligands functionalized mesoporous silica materials[J]. Appl Chem Ind, 2016, 45(4): 603-607. | |
69 | HUYNH J, PALACIO R, SAFIZADEH F, et al. Adsorption of uranium over NH2-functionalized ordered silica in aqueous solutions[J]. ACS Appl Mater Interfaces, 2017, 9(18): 15672-15684. |
70 | HUYNH J, PALACIO R, ALLAVENA A, et al. Selective adsorption of U(Ⅵ) from real mine water using an NH2-functionalized silica packed column[J]. Chem Eng J, 2021, 405: 126912. |
71 | SARAFRAZ H, MINUCHEHR A, ALAHYARIZADEH G, et al. Synthesis of enhanced phosphonic functional groups mesoporous silica for uranium selective adsorption from aqueous solutions[J]. Sci Rep, 2017, 7(1): 11675. |
72 | SARAFRAZ H, ALAHYARIZADEH G, MINUCHEHR A, et al. Economic and efficient phosphonic functional groups mesoporous silica for uranium selective adsorption from aqueous solutions[J]. Sci Rep, 2019, 9(1): 9686. |
73 | WANG Q, WANG Z, DING K, et al. Novel amidoxime-functionalized SBA-15-incorporated polymer membrane-type adsorbent for uranium extraction from wastewater[J]. J Water Process Eng, 2021, 43: 102316. |
74 | XIE Y, WANG J, WANG M, et al. Fabrication of fibrous amidoxime-functionalized mesoporous silica microsphere and its selectively adsorption property for Pb2+ in aqueous solution[J]. J Hazard Mater, 2015, 297: 66-73. |
75 | ZHAO Y, LI J, ZHAO L, et al. Synthesis of amidoxime-functionalized Fe3O4@SiO2 core-shell magnetic microspheres for highly efficient sorption of U(Ⅵ)[J]. Chem Eng J, 2014, 235: 275-283. |
76 | BAYRAMOGLU G, ARICA M Y. MCM-41 silica particles grafted with polyacrylonitrile: modification in to amidoxime and carboxyl groups for enhanced uranium removal from aqueous medium[J]. Microporous Mesoporous Mater, 2016, 226: 117-124 |
77 | WANG B, ZHOU Y, LI L, et al. Preparation of amidoxime-functionalized mesoporous silica nanospheres(ami-MSN) from coal fly ash for the removal of U(Ⅵ)[J]. Sci Total Environ, 2018, 626: 219-227. |
78 | XIAO J, JING Y, WANG X, et al. Preconcentration of uranium(Ⅵ) from aqueous solution by amidoxime-functionalized microspheres silica material: kinetics, isotherm and mechanism study[J]. ChemistrySelect, 2018, 3(43): 12346-12356. |
79 | YIN X, BAI J, TIAN W, et al. Uranium sorption from saline lake brine by amidoximated silica[J]. J Radioanal Nucl Chem, 2017, 313(1): 113-121. |
80 | ZHAO Y, WANG X, LI J, et al. Amidoxime functionalization of mesoporous silica and its high removal of U(Ⅵ)[J]. Polym Chem, 2015, 6(30): 5376-5384. |
81 | ALLEN D, BASTON G, BRADLEY A E, et al. An investigation of the radiochemical stability of ionic liquids[J].Green Chem, 2002, 4(2): 152-158. |
82 | LIU W, HUANG Y, HUANG G, et al. Eco-friendly and low-cost amidoxime-functionalized microcrystalline cellulose/mesoporous silica composite for the selective adsorption of U(Ⅵ) from aqueous solution[J]. J Radioanal Nucl Chem, 2022, 331(5): 2055-2068. |
83 | LIU W, HUANG Y, HUANG G, et al. Facile strategy to separate uranium(Ⅵ) using glued amidoxime-functionalized composite beads synthesized from aqueous solution[J]. Sep Purif Technol, 2022, 293: 121132. |
84 | DENG S, BAI R. Removal of trivalent and hexavalent chromium with aminated polyacrylonitrile fibers: performance and mechanisms[J]. Water Res, 2004, 38(9): 2424-2432. |
85 | ZHANG X, BAI R. Adsorption behavior of humic acid onto polypyrrole-coated nylon 6,6 granules[J]. J Mater Chem, 2002, 12(9): 2733-2739. |
86 | SCOTT T B, RIBA TORT O, ALLEN G C. Aqueous uptake of uranium onto pyrite surfaces; reactivity of fresh versus weathered material[J].Geochim Cosmochim Acta, 2007, 71(21): 5044-5053. |
87 | JIANG X, WANG H, WANG Q, et al. Immobilizing amino-functionalized mesoporous silica into sodium alginate for efficiently removing low concentrations of uranium[J]. J Clean Prod, 2020, 247: 119162. |
88 | GIANNAKOUDAKIS D A, ANASTOPOULOS I, BARCZAK M, et al. Enhanced uranium removal from acidic wastewater by phosphonate-functionalized ordered mesoporous silica: surface chemistry matters the most[J]. J Hazard Mater, 2021, 413: 125279. |
89 | QUILÈS F, BURNEAU A. Infrared and Raman spectra of uranyl(Ⅵ) oxo-hydroxo complexes in acid aqueous solutions: a chemometric study[J]. Vib Spectrosc, 2000, 23(2): 231-241. |
90 | NGUYEN TRUNG C, BEGUN G M, PALMER D A. Aqueous uranium complexes. 2. Raman spectroscopic study of the complex formation of the dioxouranium(Ⅵ) ion with a variety of inorganic and organic ligands[J]. Inorg Chem, 1992, 31(25): 5280-5287. |
91 | NGUYEN-TRUNG C, PALMER D A, BEGUN G M, et al. Aqueous uranyl complexes 1. Raman spectroscopic study of the hydrolysis of uranyl(Ⅵ) in solutions of trifluoromethanesulfonic acid and/or tetramethylammonium hydroxide at 25 ℃ and 0.1 MPa[J]. J Solution Chem, 2000, 29(2): 101-129. |
92 | ZHANG A, ASAKURA T, UCHIYAMA G. The adsorption mechanism of uranium(Ⅵ) from seawater on a macroporous fibrous polymeric adsorbent containing amidoxime chelating functional group[J]. React Funct Polym, 2003, 57(1): 67-76. |
[1] | Ning YUAN, Jie MA, Jin-Ling ZHANG, Jian-Sheng ZHANG. Preparation of PCN-6(M) Bimetallic Organic Framework Materials by Steam-assisted Method and Their CO2 and CH4 Adsorption Performance [J]. Chinese Journal of Applied Chemistry, 2023, 40(6): 896-903. |
[2] | Chen-Li HAO, Qing-Wei DING, Shi-Chang JIA, Yang-Bo MAO, Song-Bai WANG, Jun MA. Adsorption of Methylene Blue on Titanate Nanotubes Modified with Lipoic Acid [J]. Chinese Journal of Applied Chemistry, 2023, 40(5): 749-757. |
[3] | Xiao-Lin LAN, Hong-Xing ZHENG, Yi-Fan ZHANG, Zhen ZHAO, He-Ye XIAO, Zhi-Jiang WANG, Peng-Yang DENG. Research Progress on Preparation of SiC Ceramic Powders by Atmospheric High Temperature Solid Phase Reaction [J]. Chinese Journal of Applied Chemistry, 2023, 40(4): 476-485. |
[4] | Wei-Yin XU, Tian-Yang XU, Si-Meng SHAO, Zhao-Yang XIE, Hong-Mei YANG, Peng YU. Research Progress of the Role of Chemical Active Components of Ginseng in Prevention and Treatment of Neurodegenerative Diseases [J]. Chinese Journal of Applied Chemistry, 2023, 40(4): 486-499. |
[5] | Xiang-Min XU, Jie DENG, Yu-Qi DU, Hong-Liang SHEN, Ze-Kun AN, Cai-Ying SUN. Analysis of Pyrolytic Volatiles and Speculation of Pyrolysis Mechanism of Flame-Retardant Cotton Fabric with Spirocyclophosphamidazole [J]. Chinese Journal of Applied Chemistry, 2023, 40(3): 380-388. |
[6] | Hua-Yu WANG, Chao ZHANG, Ke-Ming CHEN, Ming GE. Research Progress of Metal-organic Framework MIL-88A(Fe) and Its Composites in Water Treatment [J]. Chinese Journal of Applied Chemistry, 2023, 40(2): 155-168. |
[7] | Rong CAO, Jie-Zhen XIA, Man-Hua LIAO, Lu-Chao ZHAO, Chen ZHAO, Qi WU. Theoretical Research Progress of Single Atom Catalysts in Electrochemical Synthesis of Ammonia [J]. Chinese Journal of Applied Chemistry, 2023, 40(1): 9-23. |
[8] | Yue-Hua ZHAO, Da-Peng WANG. Coadsorption Kinetics of Amino‑Functionalized Graphene Oxide and Fatty Acids at the Water/Oil Interface [J]. Chinese Journal of Applied Chemistry, 2022, 39(8): 1274-1284. |
[9] | Cong-Jun CAO, Han-Xiao MA, Cheng-Min HOU, Xiao-Jian DING, Biao GUAN. Adsorption of Cu(Ⅱ) from Solution by Modified Magnetic Ethyl Cellulose [J]. Chinese Journal of Applied Chemistry, 2022, 39(6): 969-979. |
[10] | Song-Song XUE, Zheng-Feng XIE, Jia-Wei HE, Tian-Yi ZHANG, Bao-Ping XIA, Yu-Qin LI. Synthesis of Sulfonylhydrazone Probe with High Selectivity and Rapid Identification of Hg(Ⅱ) Ion and Its Application in Adsorption [J]. Chinese Journal of Applied Chemistry, 2022, 39(5): 760-768. |
[11] | Lin-Hu SONG, Shi-You LI, Jie WANG, Jing-Jing ZHANG, Ning-Shuang ZHANG, Dong-Ni ZHAO, Fei XU. Research Progress of Additives for Acid and Water Removal in Electrolyte of Lithium Ion Battery [J]. Chinese Journal of Applied Chemistry, 2022, 39(5): 697-706. |
[12] | Xue WANG, Yi-Bo WANG, Xian WANG, Jian-Bing ZHU, Jun-Jie GE, Chang-Peng LIU, Wei XING. Research Progress of Mechanism of Acidic Oxygen Evolution Reaction and Development of Ir⁃based Catalysts [J]. Chinese Journal of Applied Chemistry, 2022, 39(4): 616-628. |
[13] | Hui DU, Chen-Yang YAO, Hao PENG, Bo JIANG, Shun-Xiang LI, Jun-Lie YAO, Fang ZHENG, Fang YANG, Ai-Guo WU. Applications of Transition Metal⁃doped Iron⁃based Nanoparticles in Biomedicine [J]. Chinese Journal of Applied Chemistry, 2022, 39(3): 391-406. |
[14] | Jian-Shuang ZHANG, Mei-Zhen GAO, Meng-Yao WANG, Qi SHI, Jin-Xiang DONG. Zeolitic Imidazolate Framework ZIF‑71 for Adsorption and Separation of 2,3‑Butanediol/1,3‑Propanediol From Dilute Aqueous Solutions [J]. Chinese Journal of Applied Chemistry, 2022, 39(11): 1735-1745. |
[15] | Ding-Kun YUAN, Wei-Fan CHU, Jia-Hui NI. Preparation of Copper Ferrocyanide⁃Polyacrylamide/ Carboxymethyl Cellulose/Graphene Composite Hydrogel and Its Adsorption Performance of Rubidium [J]. Chinese Journal of Applied Chemistry, 2022, 39(11): 1746-1756. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||