Chinese Journal of Applied Chemistry ›› 2022, Vol. 39 ›› Issue (11): 1746-1756.DOI: 10.19894/j.issn.1000-0518.220069
• Full Papers • Previous Articles Next Articles
Ding-Kun YUAN(), Wei-Fan CHU, Jia-Hui NI
Received:
2022-03-14
Accepted:
2022-06-08
Published:
2022-11-01
Online:
2022-11-09
Contact:
Ding-Kun YUAN
About author:
yuandingkun1124@163.comSupported by:
CLC Number:
Ding-Kun YUAN, Wei-Fan CHU, Jia-Hui NI. Preparation of Copper Ferrocyanide⁃Polyacrylamide/ Carboxymethyl Cellulose/Graphene Composite Hydrogel and Its Adsorption Performance of Rubidium[J]. Chinese Journal of Applied Chemistry, 2022, 39(11): 1746-1756.
Add to citation manager EndNote|Ris|BibTeX
URL: http://yyhx.ciac.jl.cn/EN/10.19894/j.issn.1000-0518.220069
平衡吸附容量 实验值 qe,exp/(mg·g-1) | 准一阶模型 Pseudo?first?order model | 准二阶模型 Pseudo?second?order model | ||||
---|---|---|---|---|---|---|
吸附速率常数 k1 | 平衡吸附容量计算值 qe1cal/(mg·g-1) | 线性决定系数 R2 | 吸附速率常数 k2 | 平衡吸附容量计算值 qe2cal/(mg·g-1) | 线性决定系数 R2 | |
90.07 | 0.449 8 | 45.959 | 0.714 | 0.018 9 | 95.147 | 0.998 |
Table 1 Pseudo first and second order model parameters for the adsorption of Rb+
平衡吸附容量 实验值 qe,exp/(mg·g-1) | 准一阶模型 Pseudo?first?order model | 准二阶模型 Pseudo?second?order model | ||||
---|---|---|---|---|---|---|
吸附速率常数 k1 | 平衡吸附容量计算值 qe1cal/(mg·g-1) | 线性决定系数 R2 | 吸附速率常数 k2 | 平衡吸附容量计算值 qe2cal/(mg·g-1) | 线性决定系数 R2 | |
90.07 | 0.449 8 | 45.959 | 0.714 | 0.018 9 | 95.147 | 0.998 |
温度 Temperature/℃ | 朗格缪尔吸附等温模型 Langmuir | 弗伦德里希吸附等温模型 | ||||
---|---|---|---|---|---|---|
Freundlich | ||||||
最大吸附量 qmax/(mg·g-1) | 吸附平衡常数 KL/(L·mg-1) | 线性决定系数 R2 | 非均质参数 n | 吸附平衡常数 KF | 线性决定系数 R2 | |
25 | 243.90 | 0.185 3 | 0.990 | 3.799 5 | 70.277 4 | 0.932 |
35 | 254.45 | 0.201 3 | 0.993 | 3.852 5 | 75.010 6 | 0.924 |
45 | 258.40 | 0.270 3 | 0.997 | 3.849 7 | 79.653 0 | 0.934 |
Table 2 Rb+ adsorption parameters obtained from fitting with Langmuir equation and Freundlich equation
温度 Temperature/℃ | 朗格缪尔吸附等温模型 Langmuir | 弗伦德里希吸附等温模型 | ||||
---|---|---|---|---|---|---|
Freundlich | ||||||
最大吸附量 qmax/(mg·g-1) | 吸附平衡常数 KL/(L·mg-1) | 线性决定系数 R2 | 非均质参数 n | 吸附平衡常数 KF | 线性决定系数 R2 | |
25 | 243.90 | 0.185 3 | 0.990 | 3.799 5 | 70.277 4 | 0.932 |
35 | 254.45 | 0.201 3 | 0.993 | 3.852 5 | 75.010 6 | 0.924 |
45 | 258.40 | 0.270 3 | 0.997 | 3.849 7 | 79.653 0 | 0.934 |
组分 Components | PCG | KCuFC | KCuFC?PCG |
---|---|---|---|
qe/(mg·g-1) | 2.13 | 91.63 | 89.24 |
Table 3 Adsorption performance of each component on Rb+
组分 Components | PCG | KCuFC | KCuFC?PCG |
---|---|---|---|
qe/(mg·g-1) | 2.13 | 91.63 | 89.24 |
卤水组成 Composition | Na质量浓度 ρ(Na)/(g·L-1) | Mg质量浓度 ρ(Mg)/(g·L-1) | K质量浓度 ρ(K)/(g·L-1) | Li质量浓度 ρ(Li)/(mg·L-1) | Rb质量浓度 ρ(Rb)/(mg·L-1) | Cs质量浓度 ρ(Cs)/(mg·L-1) |
---|---|---|---|---|---|---|
吸附前 Before adsorption | 1.12 | 0.91 | 2.88 | 2.81 | 10.9 | 0.2 |
吸附后 After adsorption | 1.11 | 0.88 | 2.93 | 2.72 | 4.85 | 0.01 |
解吸后 After desorption | 0.074 | 0.024 | 0.169 | 0.16 | 8.63 | 0.02 |
Table 4 Composition of salt lake brine before and after adsorption and after desorption
卤水组成 Composition | Na质量浓度 ρ(Na)/(g·L-1) | Mg质量浓度 ρ(Mg)/(g·L-1) | K质量浓度 ρ(K)/(g·L-1) | Li质量浓度 ρ(Li)/(mg·L-1) | Rb质量浓度 ρ(Rb)/(mg·L-1) | Cs质量浓度 ρ(Cs)/(mg·L-1) |
---|---|---|---|---|---|---|
吸附前 Before adsorption | 1.12 | 0.91 | 2.88 | 2.81 | 10.9 | 0.2 |
吸附后 After adsorption | 1.11 | 0.88 | 2.93 | 2.72 | 4.85 | 0.01 |
解吸后 After desorption | 0.074 | 0.024 | 0.169 | 0.16 | 8.63 | 0.02 |
质量比 Mass ratio | m(Na)/m(Rb) | m(Mg)/m(Rb) | m(K)/m(Rb) | m(Li)/m(Rb) | m(Cs)/m(Rb) |
---|---|---|---|---|---|
吸附前 Before adsorption | 103 | 83 | 264 | 0.3 | 0.02 |
解吸后 After desorption | 9 | 3 | 20 | 0.02 | 0.002 |
Table 5 Mass ratio of each ion to Rb+ before adsorption and after desorption
质量比 Mass ratio | m(Na)/m(Rb) | m(Mg)/m(Rb) | m(K)/m(Rb) | m(Li)/m(Rb) | m(Cs)/m(Rb) |
---|---|---|---|---|---|
吸附前 Before adsorption | 103 | 83 | 264 | 0.3 | 0.02 |
解吸后 After desorption | 9 | 3 | 20 | 0.02 | 0.002 |
1 | SARKAR A, JACOBS G, JI Y Y, et al. Fischer-tropsch synthesis: characterization Rb promoted iron catalyst[J]. Catal Lett, 2008, 121(1): 1-11. |
2 | REN W, SUN Y G, WANG B, et al. Highly reliable optical system for a rubidium space cold atom clock[J]. Appl Opt, 2016, 55(13): 3607-3614. |
3 | RAHIMI N, HASSANIPOUR M, YARMOHAMMADI F, et al. Nitric oxide and glutamate are contributors of anti-seizure activity of rubidium chloride: a comparison with lithium[J]. Neurosci Lett, 2019, 708: 134349. |
4 | JOSEPH K, PARKS G. Development of a deep space nuclear electric propulsion (NEP) system-a NuAER plasma NEP reactor[C]. AIAA Propulsion and Energy 2020 Forum, 2020: 3540. |
5 | JANDOVA J, DVORAK P, FORMANEK J, et al. Recovery of rubidium and potassium alums from lithium-bearing minerals[J]. Hydrometallurgy, 2012, 119: 73-76. |
6 | 郭双华, 葛荣庭, 刘宇. 含铷多金属矿石浸出液中铷,钾的萃取分离[J]. 湿法冶金, 2019, 38(6): 473-475. |
GUO S H, GE R T, LIU Y. Extraction and separation of rubidium and potassium in leaching solution of rubidium-containing polymetallic ore[J]. Hydrometallurgy (China), 2019, 38(6): 473-475. | |
7 | 曹冬梅, 王颖, 张雨山, 等. 磷钼酸铵提取铷离子的工艺研究[J]. 盐业与化工, 2014, 43(9): 22-24. |
CAO D M, WANG Y, ZHANG Y S, et al. Research on the extraction technology for Rb+ by ammonium molybdophosphate[J]. J Salt Chem Ind, 2014, 43(9): 22-24. | |
8 | YU C, LU J, HOU Z Q, et al. Mixed matrix membranes for rubidium-dependent recognition and separation: a synergistic recombination design based on electrostatic interactions[J]. Sep Purif Technol, 2021, 255: 117727. |
9 | LIU X W, WANG Q, WANG Z, et al. Extraction of Rb(I) ions from aqueous solution using novel imprinting materials[J]. Ind Eng Chem Res, 2019, 58(13): 5269-5279. |
10 | NAIDU G, LOGANATHAN P, JEONG S, et al. Rubidium extraction using an organic polymer encapsulated potassium copper hexacyanoferrate sorbent[J]. Chem Eng J, 2016, 306: 31-42. |
11 | YANG H J, LI H Y, ZHAI J L, et al. Magnetic prussian blue/graphene oxide nanocomposites caged in calcium alginate microbeads for elimination of cesium ions from water and soil[J]. Chem Eng J, 2014, 246: 10-19. |
12 | SOMEDA H H, ELZAHHAR A A, SHEHATA M K, et al. Supporting of some ferrocyanides on polyacrylonitrile (PAN) binding polymer and their application for cesium treatment[J]. Sep Purif Technol, 2002, 29(1): 53-61. |
13 | VINCENT C, HERTZ A, VINCENT T, et al. Immobilization of inorganic ion-exchanger into biopolymer foams-application to cesium sorption[J]. Chem Eng J, 2014, 236: 202-211. |
14 | WEI P D, WANG L, XIE F, et al. Strong and tough cellulose-graphene oxide composite hydrogels by multi-modulus components strategy as photothermal antibacterial platform[J]. Chem Eng J, 2022, 431: 133964. |
15 | THAKUR A, KAUR H. Synthetic chemistry of cellulose hydrogels-a review[J]. Mater Today: Proc, 2022, 48(5): 1431-1438. |
16 | WANG Y, GONG Y S, LIN N P, et al. Cellulose hydrogel coated nanometer zero-valent iron intercalated montmorillonite (CH-MMT-nFe0) for enhanced reductive removal of Cr(VI): characterization, performance, and mechanisms[J]. J Mol Liq, 2021: 118355. |
17 | 张飞雄, 党奉娜, 吴金风, 等. 玉米秸秆/羧甲基纤维素复配水凝胶水分释放行为[J]. 应用化学, 2016, 33(2): 181-189. |
ZHANG F X, DANG F N, WU J F, et al. Water release behavior of raw corn straw/carboxymethyl cellulose composite hydrogel[J]. Chinese J Appl Chem, 2016, 33(2): 181-189. | |
18 | KIM Y, KIM Y K, KIM S, et al. Nanostructured potassium copper hexacyanoferrate-cellulose hydrogel for selective and rapid cesium adsorption[J]. Chem Eng J, 2017, 313: 1042-1050. |
19 | LI G C, ZHAO Y X, ZHANG L Z, et al. Preparation of graphene oxide/polyacrylamide composite hydrogel and its effect on Schwann cells attachment and proliferation[J]. Colloids Surf B, 2016, 143: 547-556. |
20 | INAGAKI M, KIM Y A, ENDO M. Graphene: preparation and structural perfection[J]. J Mater Chem, 2011, 21(10): 3280-3294. |
21 | SIVASELVAM S, SELVAKUMAR R, VISWANATHAN C, et al. Rapid one-pot synthesis of PAM-GO-Ag nanocomposite hydrogel by gamma-ray irradiation for remediation of environment pollutants and pathogen inactivation[J]. Chemosphere, 2021, 275: 130061. |
22 | GODIYA C B, CHENG X, LI D W, et al. Carboxymethyl cellulose/polyacrylamide composite hydrogel for cascaded treatment/reuse of heavy metal ions in wastewater[J]. J Hazard Mater, 2019, 364: 28-38. |
23 | PASTA M, WESSELLS C D, LIU N, et al. Full open-framework batteries for stationary energy storage[J]. Nat Commun, 2014, 5(1): 1-9. |
24 | YANG J Y, LUO X G, YAN T S, et al. Recovery of cesium from saline lake brine with potassium cobalt hexacyanoferrate-modified chrome-tanned leather scrap adsorbent[J]. Colloids Surf A, 2018, 537: 268-280. |
25 | NAIDU G, NUR T, LOGANATHAN P, et al. Selective sorption of rubidium by potassium cobalt hexacyanoferrate[J]. Sep Purif Technol, 2016, 163: 238-246. |
26 | KRYS P, TESTA F, TROCHIMCZUK A, et al. Encapsulation of ammonium molybdophosphate and zirconium phosphate in alginate matrix for the sorption of rubidium(I)[J]. J Colloid Interface Sci, 2013, 409: 141-150. |
[1] | Ning YUAN, Jie MA, Jin-Ling ZHANG, Jian-Sheng ZHANG. Preparation of PCN-6(M) Bimetallic Organic Framework Materials by Steam-assisted Method and Their CO2 and CH4 Adsorption Performance [J]. Chinese Journal of Applied Chemistry, 2023, 40(6): 896-903. |
[2] | Chen-Li HAO, Qing-Wei DING, Shi-Chang JIA, Yang-Bo MAO, Song-Bai WANG, Jun MA. Adsorption of Methylene Blue on Titanate Nanotubes Modified with Lipoic Acid [J]. Chinese Journal of Applied Chemistry, 2023, 40(5): 749-757. |
[3] | Qin ZHANG, Wen-Bin LIU, Li-Jiao FAN, Yu-Ming XIE, Guo-Lin HUANG. Research Progress in the Preparation of Functionalized Mesoporous Silica and Its Application in Adsorption and Separation of Uranium from Water [J]. Chinese Journal of Applied Chemistry, 2023, 40(2): 169-187. |
[4] | Yu-Zhu CHEN, Si-Si LIU, Meng-Meng ZHANG, Xiang-De LIN, Dong-Dong ZENG. Polyurethane Dressing Based on Antibacterial Chitosan/Carboxymethyl Cellulose Composite Drug Coating [J]. Chinese Journal of Applied Chemistry, 2023, 40(2): 252-260. |
[5] | Xu-Juan HUANG, Ting WANG, Zheng-Qing DING, Xin-Xin YANG, Zhao-Sheng CAI, Shi-Bing SHANG. Preparation of Hydrogels Based on Dehydroabietyl Polyoxyethylene Glycidyl Ether Grafted Hydroxyethyl Chitosan and Their Properties [J]. Chinese Journal of Applied Chemistry, 2022, 39(9): 1421-1428. |
[6] | De LI, Nan WANG, Hua-Wei YANG, Jiao MA. Semi⁃interpenetrated Network Hydrogels Prepared by in⁃situ Initiation of Liquid Metal to Construct a Low Fouling Electrochemical Sensing Interface [J]. Chinese Journal of Applied Chemistry, 2022, 39(9): 1464-1474. |
[7] | Yue-Hua ZHAO, Da-Peng WANG. Coadsorption Kinetics of Amino‑Functionalized Graphene Oxide and Fatty Acids at the Water/Oil Interface [J]. Chinese Journal of Applied Chemistry, 2022, 39(8): 1274-1284. |
[8] | Cong-Jun CAO, Han-Xiao MA, Cheng-Min HOU, Xiao-Jian DING, Biao GUAN. Adsorption of Cu(Ⅱ) from Solution by Modified Magnetic Ethyl Cellulose [J]. Chinese Journal of Applied Chemistry, 2022, 39(6): 969-979. |
[9] | Song-Song XUE, Zheng-Feng XIE, Jia-Wei HE, Tian-Yi ZHANG, Bao-Ping XIA, Yu-Qin LI. Synthesis of Sulfonylhydrazone Probe with High Selectivity and Rapid Identification of Hg(Ⅱ) Ion and Its Application in Adsorption [J]. Chinese Journal of Applied Chemistry, 2022, 39(5): 760-768. |
[10] | Jian-Shuang ZHANG, Mei-Zhen GAO, Meng-Yao WANG, Qi SHI, Jin-Xiang DONG. Zeolitic Imidazolate Framework ZIF‑71 for Adsorption and Separation of 2,3‑Butanediol/1,3‑Propanediol From Dilute Aqueous Solutions [J]. Chinese Journal of Applied Chemistry, 2022, 39(11): 1735-1745. |
[11] | ZHAO Chang-Li, QIN Ming-Gao, DOU Xiao-Qiu, FENG Chuan-Liang. High Mechanical Stability and Osteogenesis of Chiral Supramolecular Hydrogel Induced by Inorganic Nanoparticles [J]. Chinese Journal of Applied Chemistry, 2022, 39(1): 177-187. |
[12] | LIU Xu, LI Yang-Ke-Xin, DU Li, YU Jian, WANG Jia-Cheng, GENG Yang, HAN Guang, SUN Kuan, LI Meng. Bio⁃inspired Hydrogels: Synthesis, Bionic Design and Applications in the Field of Energy Storage and Conversion [J]. Chinese Journal of Applied Chemistry, 2022, 39(1): 35-54. |
[13] | Sheng-Nan LI, Jun FU. Biomimetic Flexible Hydrogel Electronics [J]. Chinese Journal of Applied Chemistry, 2022, 39(1): 55-73. |
[14] | TANG Li-Zong, ZHANG Lin, DONG Yun-Sheng, QI Chun-Xiao, LIU Xiang-Sheng, WANG Shu-Fang. Research Progress on Responsive Hydrogels and Their Applications in Biomedicines [J]. Chinese Journal of Applied Chemistry, 2021, 38(7): 743-753. |
[15] | LIU Wen-Bin, YANG Sha-Sha, HUANG Guo-Lin, FAN Li-Jiao, XIE Yu-Ming. Synthesis of Phosphorylated Xanthan Gum/Graphene Oxide and Its Selective Adsorption of Uranium [J]. Chinese Journal of Applied Chemistry, 2021, 38(6): 658-667. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||